73 research outputs found
Collisions of particles in locally AdS spacetimes I. Local description and global examples
We investigate 3-dimensional globally hyperbolic AdS manifolds containing
"particles", i.e., cone singularities along a graph . We impose
physically relevant conditions on the cone singularities, e.g. positivity of
mass (angle less than on time-like singular segments). We construct
examples of such manifolds, describe the cone singularities that can arise and
the way they can interact (the local geometry near the vertices of ).
We then adapt to this setting some notions like global hyperbolicity which are
natural for Lorentz manifolds, and construct some examples of globally
hyperbolic AdS manifolds with interacting particles.Comment: This is a rewritten version of the first part of arxiv:0905.1823.
That preprint was too long and contained two types of results, so we sliced
it in two. This is the first part. Some sections have been completely
rewritten so as to be more readable, at the cost of slightly less general
statements. Others parts have been notably improved to increase readabilit
Quasicircles and width of Jordan curves in CP1
We study a notion of âwidthâ for Jordan curves in (Formula presented.), paying special attention to the class of quasicircles. The width of a Jordan curve is defined in terms of the geometry of its convex hull in hyperbolic three-space. A similar invariant in the setting of anti-de Sitter geometry was used by BonsanteâSchlenker to characterize quasicircles among a larger class of Jordan curves in the boundary of anti de Sitter space. In contrast to the AdS setting, we show that there are Jordan curves of bounded width which fail to be quasicircles. However, we show that Jordan curves with small width are quasicircles
The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti-de Sitter geometry
Celebrated work of Alexandrov and Pogorelov determines exactly which metrics on the sphere are induced on the boundary of a compact convex subset of hyperbolic three-space. As a step toward a generalization for unbounded convex subsets, we consider convex regions of hyperbolic three-space bounded by two properly embedded disks which meet at infinity along a Jordan curve in the ideal boundary. In this setting, it is natural to augment the notion of induced metric on the boundary of the convex set to include a gluing map at infinity which records how the asymptotic geometry of the two surfaces compares near points of the limiting Jordan curve. Restricting further to the case in which the induced metrics on the two bounding surfaces have constant curvature K 2 Ć 1; 0/ and the Jordan curve at infinity is a quasicircle, the gluing map is naturally a quasisymmetric homeomorphism of the circle. The main result is that for each value of K, every quasisymmetric map is achieved as the gluing map at infinity along some quasicircle. We also prove analogous results in the setting of three-dimensional anti-de Sitter geometry. Our results may be viewed as universal versions of the conjectures of Thurston and Mess about prescribing the induced metric on the boundary of the convex core of quasifuchsian hyperbolic manifolds and globally hyperbolic anti-de Sitter spacetimes
Collisions of particles in locally AdS spacetimes II Moduli of globally hyperbolic spaces
We investigate 3-dimensional globally hyperbolic AdS manifolds containing
"particles", i.e., cone singularities of angles less than along a
time-like graph . To each such space we associate a graph and a finite
family of pairs of hyperbolic surfaces with cone singularities. We show that
this data is sufficient to recover the space locally (i.e., in the neighborhood
of a fixed metric). This is a partial extension of a result of Mess for
non-singular globally hyperbolic AdS manifolds.Comment: 29 pages, 3 figures. v2: 41 pages, improved exposition. To appear,
Comm. Math. Phys. arXiv admin note: text overlap with arXiv:0905.182
Cosmological measurements, time and observables in (2+1)-dimensional gravity
We investigate the relation between measurements and the physical observables
for vacuum spacetimes with compact spatial surfaces in (2+1)-gravity with
vanishing cosmological constant. By considering an observer who emits lightrays
that return to him at a later time, we obtain explicit expressions for several
measurable quantities as functions on the physical phase space of the theory:
the eigentime elapsed between the emission of a lightray and its return to the
observer, the angles between the directions into which the light has to be
emitted to return to the observer and the relative frequencies of the lightrays
at their emission and return. This provides a framework in which conceptual
questions about time, observables and measurements can be addressed. We analyse
the properties of these measurements and their geometrical interpretation and
show how they allow an observer to determine the values of the Wilson loop
observables that parametrise the physical phase space of (2+1)-gravity. We
discuss the role of time in the theory and demonstrate that the specification
of an observer with respect to the spacetime's geometry amounts to a gauge
fixing procedure yielding Dirac observables.Comment: 38 pages, 11 eps figures, typos corrected, references update
The Universal Phase Space of AdS3 Gravity
We describe what can be called the "universal" phase space of AdS3 gravity,
in which the moduli spaces of globally hyperbolic AdS spacetimes with compact
spatial sections, as well as the moduli spaces of multi-black-hole spacetimes
are realized as submanifolds. The universal phase space is parametrized by two
copies of the Universal Teichm\"uller space T(1) and is obtained from the
correspondence between maximal surfaces in AdS3 and quasisymmetric
homeomorphisms of the unit circle. We also relate our parametrization to the
Chern-Simons formulation of 2+1 gravity and, infinitesimally, to the
holographic (Fefferman-Graham) description. In particular, we obtain a relation
between the generators of quasiconformal deformations in each T(1) sector and
the chiral Brown-Henneaux vector fields. We also relate the charges arising in
the holographic description (such as the mass and angular momentum of an AdS3
spacetime) to the periods of the quadratic differentials arising via the Bers
embedding of T(1)xT(1). Our construction also yields a symplectic map from
T*T(1) to T(1)xT(1) generalizing the well-known Mess map in the compact spatial
surface setting.Comment: 41 pages, 2 figures, revised version accepted for publication in
Commun.Math.Phy
Fuchsian convex bodies: basics of Brunn--Minkowski theory
The hyperbolic space \H^d can be defined as a pseudo-sphere in the
Minkowski space-time. In this paper, a Fuchsian group is a group of
linear isometries of the Minkowski space such that \H^d/\Gamma is a compact
manifold. We introduce Fuchsian convex bodies, which are closed convex sets in
Minkowski space, globally invariant for the action of a Fuchsian group. A
volume can be associated to each Fuchsian convex body, and, if the group is
fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be
studied in the same manner as convex bodies of Euclidean space in the classical
Brunn--Minkowski theory. For example, support functions can be defined, as
functions on a compact hyperbolic manifold instead of the sphere.
The main result is the convexity of the associated volume (it is log concave
in the classical setting). This implies analogs of Alexandrov--Fenchel and
Brunn--Minkowski inequalities. Here the inequalities are reversed
Notes on a paper of Mess
These notes are a companion to the article "Lorentz spacetimes of constant
curvature" by Geoffrey Mess, which was first written in 1990 but never
published. Mess' paper will appear together with these notes in a forthcoming
issue of Geometriae Dedicata.Comment: 26 page
A glimpse into Thurston's work
We present an overview of some significant results of Thurston and their
impact on mathematics. The final version of this paper will appear as Chapter 1
of the book "In the tradition of Thurston: Geometry and topology", edited by K.
Ohshika and A. Papadopoulos (Springer, 2020)
- âŠ