92 research outputs found
Verification of the Thomson-Onsager reciprocity relation for spin caloritronics
We investigate the Thomson-Onsager relation between the spin-dependent
Seebeck and spin-dependent Peltier effect. To maintain identical device and
measurement conditions we measure both effects in a single
NiFe/Cu/NiFe nanopillar spin valve device subjected
to either an electrical or a thermal bias. In the low bias regime, we observe
similar spin signals as well as background responses, as required by the
Onsager reciprocity relation. However, at large biases, deviation from
reciprocity occurs due to dominant nonlinear contribution of the temperature
dependent transport coefficients. By systematic modeling of these nonlinear
thermoelectric effects and measuring higher order thermoelectric responses for
different applied biases, we identify the transition between the two regimes as
the point at which Joule heating start to dominate over Peltier heating. Our
results signify the importance of local equilibrium for the validity of this
phenomenological reciprocity relation.Comment: 5 pages, 5 figure
Spin-dependent Seebeck coefficients of Ni_{80}Fe_{20} and Co in nanopillar spin valves
We have experimentally determined the spin-dependent Seebeck coefficient of
permalloy (Ni_{80}Fe_{20}) and cobalt (Co) using nanopillar spin valve devices.
The devices were specifically designed to completely separate heat related
effects from charge related effects. A pure heat current through the nanopillar
spin valve, a stack of two ferromagnetic layers (F) separated by a non-magnetic
layer (N), leads to a thermovoltage proportional to the spin-dependent Seebeck
coefficient S_{S}=S_{\uparrow}-S_{\downarrow} of the ferromagnet, where
S_{\uparrow} and S_{\downarrow} are the Seebeck coefficient for spin-up and
spin-down electrons. By using a three-dimensional finite-element model (3D-FEM)
based on spin-dependent thermoelectric theory, whose input material parameters
were measured in separate devices, we were able to accurately determine a
spin-dependent Seebeck coefficient of -1.8 microvolt/Kelvin and -4.5
microvolt/Kelvin for cobalt and permalloy, respectively corresponding to a
Seebeck coefficient polarization P_{S}=S_{S}/S_{F} of 0.08 and 0.25, where
S_{F} is the Seebeck coefficient of the ferromagnet. The results are in
agreement with earlier theoretical work in Co/Cu multilayers and spin-dependent
Seebeck and spin-dependent Peltier measurements in Ni_{80}Fe_{20}/Cu spin valve
structures
Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions
Understanding heat generation and transport processes in a magnetic tunnel
junction (MTJ) is a significant step towards improving its application in
current memory devices. Recent work has experimentally demonstrated the
magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction
varies as the magnetic configuration changes from a parallel (P) to an
anti-parallel (AP) configuration. Here we report the study on its
as-yet-unexplored reciprocal effect, the magneto-Peltier effect, where the heat
flow carried by the tunneling electrons is altered by changing the magnetic
configuration of the MTJ. The magneto-Peltier signal that reflects the change
in the temperature difference across the junction between the P and AP
configurations scales linearly with the applied current in the small bias but
is greatly enhanced in the large bias regime, due to higher-order Joule heating
mechanisms. By carefully extracting the linear response which reflects the
magneto-Peltier effect, and comparing it with the magneto-Seebeck measurements
performed on the same device, we observe results consistent with Onsager
reciprocity. We estimate a magneto-Peltier coefficient of 13.4 mV in the linear
regime using a three-dimensional thermoelectric model. Our result opens up the
possibility of programmable thermoelectric devices based on the Peltier effect
in MTJs
Direct electronic measurement of Peltier cooling and heating in graphene
Thermoelectric effects allow the generation of electrical power from waste
heat and the electrical control of cooling and heating. Remarkably, these
effects are also highly sensitive to the asymmetry in the density of states
around the Fermi energy and can therefore be exploited as probes of distortions
in the electronic structure at the nanoscale. Here we consider two-dimensional
graphene as an excellent nanoscale carbon material for exploring the
interaction between electronic and thermal transport phenomena, by presenting a
direct and quantitative measurement of the Peltier component to electronic
cooling and heating in graphene. Thanks to an architecture including nanoscale
thermometers, we detected Peltier component modulation of up to 15 mK for
currents of 20 A at room temperature and observed a full reversal between
Peltier cooling and heating for electron and hole regimes. This fundamental
thermodynamic property is a complementary tool for the study of nanoscale
thermoelectric transport in two-dimensional materials.Comment: Final version published in Nature Communications under a Creative
Commons Attribution 4.0 International Licens
Observation of the spin Peltier effect
We report the observation of the spin Peltier effect (SPE) in the
ferrimagnetic insulator Yttrium Iron Garnet (YIG), i.e. a heat current
generated by a spin current flowing through a Platinum (Pt)|YIG interface. The
effect can be explained by the spin torque that transforms the spin current in
the Pt into a magnon current in the YIG. Via magnon-phonon interactions the
magnetic fluctuations modulate the phonon temperature that is detected by a
thermopile close to the interface. By finite-element modelling we verify the
reciprocity between the spin Peltier and spin Seebeck effect. The observed
strong coupling between thermal magnons and phonons in YIG is attractive for
nanoscale cooling techniques.Comment: 5 pages, 3 figures, 4 pages supplementary information, 4
supplementary figure
Control of spin current by a magnetic YIG substrate in NiFe/Al nonlocal spin valves
We study the effect of a magnetic insulator [yttrium iron garnet (YIG)] substrate on the spin-transport properties of Ni80Fe20/Al nonlocal spin valve (NLSV) devices. The NLSV signal on the YIG substrate is about two to three times lower than that on a nonmagnetic SiO2 substrate, indicating that a significant fraction of the spin current is absorbed at the Al/YIG interface. By measuring the NLSV signal for varying injector-to-detector distances and using a three-dimensional spin-transport model that takes spin-current absorption at the Al/YIG interface into account, we obtain an effective spin-mixing conductance G(up arrow down arrow) similar or equal to 5-8 x 10(13) Omega(-1) m(-2). We also observe a small, but clear, modulation of the NLSV signal when rotating the YIG magnetization direction with respect to the fixed spin polarization of the spin accumulation in the Al. Spin relaxation due to thermal magnons or roughness of the YIG surface may be responsible for the observed small modulation of the NLSV signal.</p
Age at Menarche, Menstrual Characteristics, and Risk of Preeclampsia
We examined associations of age at menarche and menstrual characteristics with the risk of preeclampsia among participants (n = 3,365) of a pregnancy cohort study. Data were collected using in-person interviews and medical record abstraction. Logistic regression was used to estimate adjusted odds ratio (OR) and 95% confidence interval (95% CI). There was a significant inverse association between age at menarche and risk of preeclampsia (P value for trend < 0.05). Association of long cycle length (>36 days) with higher risk of preeclampsia was present only among women who had prepregnancy body mass index <25 kg/m2 (interaction P value = 0.04). Early menarche is associated with higher risk of preeclampsia. Prepregnancy weight may modify associations of long menstrual cycles with risk of preeclampsia
Effect of Retrapping on Thermoluminescence Peak Intensities of Small Amorphous Silicon Quantum Dots
The effect of retrapping on thermoluminescence intensity peak corresponding to each trap of small amorphous silicon quantum dots in three traps -one recombination center model is investigated. For first order kinetics, where there is no effect of retrapping, the thermoluminescence intensity clearly depends on the level of the trap beneath the edge of the conduction band. This energy difference between the edge of the conduction band and the level of the trap is called trap depth (activation energy). The shallowest trap gives the highest thermoluminescence intensity peak for first order kinetics. However, it was clearly observed that for second order and a case beyond second order kinetics, the thermoluminescence intensity peak corresponding to each trap does not depend on the trap depth. In this case, the retrapping probability coefficients are taken into account and most electrons which are detrapped from the shallow trap(s) will be retrapped to the deeper trap(s) resulting in fewer electrons taking part in the recombination process. This significantly reduces the thermoluminescence intensity peaks of the shallower trap(s). It was observed that the deepest trap, with very high concentration of electrons due to the retrapping phenomenon, gives the highest thermoluminescence intensity. In addition, the variation of concentration of electrons in each trap and the intensity of the thermoluminescence are presented. Though we considered the model of three traps and one recombination center, this phenomenon is true for any multiple traps
- …