13,509 research outputs found
A Faraway Quasar in the Direction of the Highest Energy Auger Event
The highest energy cosmic ray event reported by the Auger Observatory has an
energy of 148 EeV. It does not correlate with any nearby (z0.024) object
capable of originating such a high energy event. Intrigued by the fact that the
highest energy event ever recorded (by the Fly's Eye collaboration) points to a
faraway quasar with very high radio luminosity and large Faraday rotation
measurement, we have searched for a similar source for the Auger event. We find
that the Auger highest energy event points to a quasar with similar
characteristics to the one correlated to the Fly's Eye event. We also find the
same kind of correlation for one of the highest energy AGASA events. We
conclude that so far these types of quasars are the best source candidates for
both Auger and Fly's Eye highest energy events. We discuss a few exotic
candidates that could reach us from gigaparsec distances.Comment: 13 pages (version to be published in JCAP
Coupled vortex shedding and acoustic resonances in a duct
Undesirable sound generation in the combustion chambers of solid propellant rocket motors previously has been attributed to vortex shedding from obstructions that are uncovered as the propellant burns back. An experimental investigation of the phenomenon has re-conf irmed this observation and extended the understanding of the mechanism by which the process is self-sustaining. A pair of aluminum baffles within a lucite duct through which air is drawn models the important aspects which enable the sound generation mechanism to operate. The baffles form an edgetone system which interacts with the longitudinal acoustic modes of the chamber. Pure acoustic tones occur spontaneously, at frequencies equal to the acoustic resonances, when the spacing between the baffles
satisfies certain criteria. Flow visualization using smoke and a strobe light triggered by the pressure oscillation indicates that vortex shedding occurs at the upstream baffle in phase with the acoustic velocity oscillation there. Based on the results of the present experiments and others reported in the literature, a mechanism is postulated which explains the observed behavior. It is suggested that pressures induced on the downstream baffle by the vortices convected past by the freestream drive the acoustic resonance. In turn, the acoustic velocity at the upstream baffle serves as the perturbation triggering the formation of vortices in the shear layer growing from the separation point at that location. The amplitude is
limited by the nonlinearity in the growth of the vortices in the shear layer. A lIodel based on the proposed mechanism is formulated and written as a computer program. The results predict the behavior of the experilllental apparatus well, confirming that the postulated mechanism is correct
On the Andreadakis-Johnson filtration of the automorphism group of a free group
The Johnson filtration of the automorphism group of a free group is composed
of those automorphisms which act trivially on nilpotent quotients of the free
group. We compute cohomology classes as follows: (i) we analyze analogous
classes for a subgroup of the pure symmetric automorphism group of a free
group, and (ii) we analyze features of these classes which are preserved by the
Johnson homomorphism. One consequence is that the ranks of the cohomology
groups in any fixed dimension between 1 and n-1 increase without bound for
terms deep in the Johnson filtraton.Comment: Corrections; revisions to proof of main theore
- …