1,126 research outputs found

    Towards an optical potential for rare-earths through coupled channels

    Full text link
    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich \emph{et al.}, a model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed. We demonstrate that the obtained results of calculations for total, elastic and inelastic cross sections, as well as elastic and inelastic angular distributions correspond to a remarkably good agreement with experimental data for scattering energies above around a few MeV.Comment: 7 pages, 6 figures. Submitted to the proceedings of the XXXVI Reuni\~ao de Trabalho de F\'{\i}sica Nuclear no Brasil (XXXVI Brazilian Workshop on Nuclear Physics), held in Maresias, S\~ao Paulo, Brazil in September 2013, which should be published on AIP Conference Proceeding Series. arXiv admin note: substantial text overlap with arXiv:1311.1115, arXiv:1311.042

    Reaction cross-section predictions for nucleon induced reactions

    Full text link
    A microscopic calculation of the optical potential for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target and to all relevant pickup channels. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and to long-lived compound nucleus resonances. We calculated the reaction cross sections for the nucleon induced reactions on the targets 40,48^{40,48}Ca, 58^{58}Ni, 90^{90}Zr and 144^{144}Sm using the QRPA description of target excitations, coupling to all inelastic open channels, and coupling to all transfer channels corresponding to the formation of a deuteron. The results of such calculations were compared to predictions of a well-established optical potential and with experimental data, reaching very good agreement. The inclusion of couplings to pickup channels were an important contribution to the absorption. For the first time, calculations of excitations account for all of the observed reaction cross-sections, at least for incident energies above 10 MeV.Comment: 6 pages, 6 figures. Submitted to INPC 2010 Conference Proceeding

    Stochastic Perturbations in Vortex Tube Dynamics

    Full text link
    A dual lattice vortex formulation of homogeneous turbulence is developed, within the Martin-Siggia-Rose field theoretical approach. It consists of a generalization of the usual dipole version of the Navier-Stokes equations, known to hold in the limit of vanishing external forcing. We investigate, as a straightforward application of our formalism, the dynamics of closed vortex tubes, randomly stirred at large length scales by gaussian stochastic forces. We find that besides the usual self-induced propagation, the vortex tube evolution may be effectively modeled through the introduction of an additional white-noise correlated velocity field background. The resulting phenomenological picture is closely related to observations previously reported from a wavelet decomposition analysis of turbulent flow configurations.Comment: 16 pages + 2 eps figures, REVTeX

    Thermostatistics of overdamped motion of interacting particles

    Full text link
    We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simulations, that the overdamped motion of interacting particles at T=0, where T is the temperature of a thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For sufficiently high values of T, the distribution of particles becomes Gaussian, so that the classical Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a linear combination of Tsallis and Boltzmann-Gibbs entropies.Comment: 4 pages, 2 figure

    Consequences of the H-Theorem from Nonlinear Fokker-Planck Equations

    Full text link
    A general type of nonlinear Fokker-Planck equation is derived directly from a master equation, by introducing generalized transition rates. The H-theorem is demonstrated for systems that follow those classes of nonlinear Fokker-Planck equations, in the presence of an external potential. For that, a relation involving terms of Fokker-Planck equations and general entropic forms is proposed. It is shown that, at equilibrium, this relation is equivalent to the maximum-entropy principle. Families of Fokker-Planck equations may be related to a single type of entropy, and so, the correspondence between well-known entropic forms and their associated Fokker-Planck equations is explored. It is shown that the Boltzmann-Gibbs entropy, apart from its connection with the standard -- linear Fokker-Planck equation -- may be also related to a family of nonlinear Fokker-Planck equations.Comment: 19 pages, no figure
    • …
    corecore