2,309 research outputs found

    The exchange bias phenomenon in uncompensated interfaces: Theory and Monte Carlo simulations

    Full text link
    We performed Monte Carlo simulations in a bilayer system composed by two thin films, one ferromagnetic (FM) and the other antiferromagnetic (AFM). Two lattice structures for the films were considered: simple cubic (sc) and a body center cubic (bcc). In both lattices structures we imposed an uncompensated interfacial spin structure, in particular we emulated a FeF2-FM system in the case of the (bcc) lattice. Our analysis focused on the incidence of the interfacial strength interactions between the films J_eb and the effect of thermal fluctuations on the bias field H_EB. We first performed Monte Carlo simulations on a microscopic model based on classical Heisenberg spin variables. To analyze the simulation results we also introduced a simplified model that assumes coherent rotation of spins located on the same layer parallel to the interface. We found that, depending on the AFM film anisotropy to exchange ratio, the bias field is either controlled by the intrinsic pinning of a domain wall parallel to the interface or by the stability of the first AFM layer (quasi domain wall) near the interface.Comment: 18 pages, 11 figure

    Training Induced Positive Exchange Bias in NiFe/IrMn Bilayers

    Full text link
    Positive exchange bias has been observed in the Ni81_{81}Fe19_{19}/Ir20_{20}Mn80_{80} bilayer system via soft x-ray resonant magnetic scattering. After field cooling of the system through the blocking temperature of the antiferromagnet, an initial conventional negative exchange bias is removed after training i. e. successive magnetization reversals, resulting in a positive exchange bias for a temperature range down to 30 K below the blocking temperature (450 K). This new manifestation of magnetic training is discussed in terms of metastable magnetic disorder at the magnetically frustrated interface during magnetization reversal.Comment: 4 pages, 3 figure

    Neutron resonances in planar waveguides

    Full text link
    Results of experimental investigations of a neutron resonances width in planar waveguides using the time-of-flight reflectometer REMUR of the IBR-2 pulsed reactor are reported and comparison with theoretical calculations is presented. The intensity of the neutron microbeam emitted from the waveguide edge was registered as a function of the neutron wavelength and the incident beam angular divergence. The possible applications of this method for the investigations of layered nanostructures are discussed

    Proximity effect of vanadium on spin-density-wave magnetism in Cr films

    Full text link
    The spin-density wave (SDW) state in thin chromium films is well known to be strongly affected by proximity effects from neighboring layers. To date the main attention has been given to effects arising from exchange interactions at interfaces. In the present work we report on combined neutron and synchrotron scattering studies of proximity effects in Cr/V films where the boundary condition is due to the hybridization of Cr with paramagnetic V at the interface. We find that the V/Cr interface has a strong and long-range effect on the polarization, period, and the N\'{e}el temperature of the SDW in rather thick Cr films. This unusually strong effect is unexpected and not predicted by theory.Comment: 7 figure

    Einstein-Yang-Mills solutions in higher dimensional de Sitter spacetime

    Get PDF
    We consider particle-like and black holes solutions of the Einstein-Yang-Mills system with positive cosmological constant in d>4 spacetime dimensions. These configurations are spherically symmetric and present a cosmological horizon for a finite value of the radial coordinate, approaching asymptotically the de Sitter background. In the usual Yang--Mills case we find that the mass of these solutions, evaluated outside the cosmological horizon at future/past infinity generically diverges for d>4. Solutions with finite mass are found by adding to the action higher order gauge field terms belonging to the Yang--Mills hierarchy. A discussion of the main properties of these solutions and their differences from those to the usual Yang-Mills model, both in four and higher dimensions is presented.Comment: 17 pages, 8 figure

    Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study

    Get PDF
    We perform a comparative study of the free energies and the density distributions in hard sphere crystals using Monte Carlo simulations and density functional theory (employing Fundamental Measure functionals). Using a recently introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009)) we obtain crystal free energies to a high precision. The free energies from Fundamental Measure theory are in good agreement with the simulation results and demonstrate the applicability of these functionals to the treatment of other problems involving crystallization. The agreement between FMT and simulations on the level of the free energies is also reflected in the density distributions around single lattice sites. Overall, the peak widths and anisotropy signs for different lattice directions agree, however, it is found that Fundamental Measure theory gives slightly narrower peaks with more anisotropy than seen in the simulations. Among the three types of Fundamental Measure functionals studied, only the White Bear II functional (Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for the equilibrium vacancy concentration and a physical behavior of the chemical potential in crystals constrained by a fixed vacancy concentration.Comment: 17 pages, submitted to Phys. Rev.

    Dual Behavior of Antiferromagnetic Uncompensated Spins in NiFe/IrMn Exchange Biased Bilayers

    Full text link
    We present a comprehensive study of the exchange bias effect in a model system. Through numerical analysis of the exchange bias and coercive fields as a function of the antiferromagnetic layer thickness we deduce the absolute value of the averaged anisotropy constant of the antiferromagnet. We show that the anisotropy of IrMn exhibits a finite size effect as a function of thickness. The interfacial spin disorder involved in the data analysis is further supported by the observation of the dual behavior of the interfacial uncompensated spins. Utilizing soft x-ray resonant magnetic reflectometry we have observed that the antiferromagnetic uncompensated spins are dominantly frozen with nearly no rotating spins due to the chemical intermixing, which correlates to the inferred mechanism for the exchange bias.Comment: 4 pages, 3 figure

    Dyons in N=4 Gauged Supergravity

    Full text link
    We study monopole and dyon solutions to the equations of motion of the bosonic sector of N = 4 gauged supergravity in four dimensional space-time. A static, spherically symmetric ansatz for the metric, gauge fields, dilaton and axion leads to soliton solutions which, in the electrically charged case, have compact spatial sections. Both analytical and numerical results for the solutions are presented.Comment: 12 pages, 7 figures. Minor changes, references adde

    Interplay between the magnetic anisotropy contributions of Cobalt nanowires

    Get PDF
    We report on the magnetic properties and the crystallographic structure of the cobalt nanowire arrays as a function of their nanoscale dimensions. X-ray diffraction measurements show the appearance of an in-plane HCP-Co phase for nanowires with 50 nm diameter, suggesting a partial reorientation of the magnetocrystalline anisotropy axis along the membrane plane with increasing pore diameter. No significant changes in the magnetic behavior of the nanowire system are observed with decreasing temperature, indicating that the effective magnetoelastic anisotropy does not play a dominant role in the remagnetization processes of individual nanowires. An enhancement of the total magnetic anisotropy is found at room temperature with a decreasing nanowire diameter-to-length ratio (d/L), a result that is quantitatively analyzed on the basis of a simplified shape anisotropy model.Comment: 8 pages, 4 figure
    • 

    corecore