7,707 research outputs found
Partition Functions of Pure Spinors
We compute partition functions describing multiplicities and charges of
massless and first massive string states of pure-spinor superstrings in
3,4,6,10 dimensions. At the massless level we find a spin-one gauge multiplet
of minimal supersymmetry in d dimensions. At the first massive string level we
find a massive spin-two multiplet. The result is confirmed by a direct analysis
of the BRST cohomology at ghost number one. The central charges of the pure
spinor systems are derived in a manifestly SO(d) covariant way confirming that
the resulting string theories are critical. A critical string model with
N=(2,0) supersymmetry in d=2 is also described.Comment: LaTex, 30 p
Multimetric Supergravities
Making use of integral forms and superfield techniques we propose
supersymmetric extensions of the multimetric gravity Lagrangians in dimensions
one, two, three and four. The supersymmetric interaction potential covariantly
deforms the bosonic one, producing in particular suitable super-symmetric
polynomials generated by the Berezinian. As an additional application of our
formalism we construct supersymmetric multi-Maxwell theories in dimensions
three and four.Comment: 37 pages, Latex2e, no figure
On the sum of random samples with bounded Pareto distribution
Heavy-tailed random samples, as well as their sum or average, are encountered in a number of signal pro-cessing applications in radar, communications, finance, and natural sciences. Modeling such data through the Pareto distribution is particularly attractive due to its simple analytical form, but may lead to infinite variance and/or mean, which is not physically plausible: in fact, samples are always bounded in practice, namely because of clipping during the signal acquisition or deliberate censoring or trimming (truncation) at the processing stage. Based on this motivation, the paper derives and analyzes the distribution of the sum of right-censored Pareto Type-II variables, which generalizes the conventional Pareto (Type-I) and Lomax distributions. The distribution of the sum of truncated Pareto is also obtained, and an analytical connection is drawn with the unbounded case. A numerical analysis illustrates the findings, providing insights on several aspects, including the intimate mixture structure of the obtained expressions. An il-lustrative application to the analysis of real radar data is also provided. (c) 2021 Elsevier B.V. All rights reserved
An Introduction to the Covariant Quantization of Superstrings
We give an introduction to a new approach to the covariant quantization of
superstrings. After a brief review of the classical Green--Schwarz superstring
and Berkovits' approach to its quantization based on pure spinors, we discuss
our covariant formulation without pure spinor constraints. We discuss the
relation between the concept of grading, which we introduced to define vertex
operators, and homological perturbation theory, and we compare our work with
recent work by others. In the appendices, we include some background material
for the Green-Schwarz and Berkovits formulations, in order that this
presentation be self contained.Comment: LaTex, 23 pp. Contribution to the Proceedings of the Workshop in
String Theory, Leuven 2002, some references added and a comment on ref. [16
An epistatic mini-circuitry between the transcription factors Snail and HNF4a controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs
Preservation of the epithelial state involves the stable repression of EMT program while maintenance of the stem compartment requires the inhibition of differentiation processes. A simple and direct molecular mini-circuitry between master elements of these biological processes, may provide the best device to keep balanced such complex phenomena. In this work, we show that in hepatic stem cell Snail, a transcriptional repressor of the hepatocyte differentiation master gene HNF4, directly represses the expression of the epithelial microRNAs-200c and -34a, which in turn target several stem cell genes. Notably, in differentiated hepatocytes HNF4, previously identified as a transcriptional repressor of Snail, induces the microRNAs-34a and -200a, b, c that, when silenced, causes epithelial dedifferentiation and reacquisition of stem traits. Altogether these data unveiled Snail, HNF4 and microRNAs -200a, b, c and -34a as epistatic elements controlling hepatic stem cell maintenance/differentiation
Stretched chemical bonds in Si6H6: A transition from ring currents to localized pi-electrons?
Motivated by solid-state studies on the cleavage force in Si, and the
consequent stretching of chemical bonds, we here study bond stretching in the,
as yet unsynthesized, free space molecule Si6H6. We address the question as to
whether substantial bond stretching (but constrained to uniform scaling on all
bonds) can result in a transition from ring current behaviour, characteristic
say of benzene at its equilibrium geometry, to localized pi-electrons on Si
atoms. Some calculations are also recorded on dissociation into 6 SiH radicals.
While the main studies have been carried out by unrestricted Hartree-Fock (HF)
theory, the influence of electron correlation has been examined using two forms
of density functional theory. Planar Si6H6 treated by HF is bound to be
unstable, not all vibrational frequencies being real. Some buckling is then
allowed, which results in real frequencies and stability. Evidence is then
provided that the non-planar structure, as the Si-Si distance is increased,
exhibits pi-electron localization in the range 1.2-1.5 times the equilibrium
distance
- …