26 research outputs found
SWKB Quantization Rules for Bound States in Quantum Wells
In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix
formulation of the Bohr-Sommerfield quantization rule has been applied to the
study of bound states in one dimension quantum wells. Here we study these
potentials in the frame work of supersymmetric WKB (SWKB) quantization
approximation and find that SWKB quantization rule is superior to the modified
Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.Comment: 8 page
An effective singular oscillator for Duffin-Kemmer-Petiau particles with a nonminimal vector coupling: a two-fold degeneracy
Scalar and vector bosons in the background of one-dimensional nonminimal
vector linear plus inversely linear potentials are explored in a unified way in
the context of the Duffin-Kemmer-Petiau theory. The problem is mapped into a
Sturm-Liouville problem with an effective singular oscillator. With boundary
conditions emerging from the problem, exact bound-state solutions in the spin-0
sector are found in closed form and it is shown that the spectrum exhibits
degeneracy. It is shown that, depending on the potential parameters, there may
or may not exist bound-state solutions in the spin-1 sector.Comment: 1 figure. arXiv admin note: substantial text overlap with
arXiv:1009.159
The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity
We describe a six-parameter family of the minimum-uncertainty squeezed states
for the harmonic oscillator in nonrelativistic quantum mechanics. They are
derived by the action of corresponding maximal kinematical invariance group on
the standard ground state solution. We show that the product of the variances
attains the required minimum value 1/4 only at the instances that one variance
is a minimum and the other is a maximum, when the squeezing of one of the
variances occurs. The generalized coherent states are explicitly constructed
and their Wigner function is studied. The overlap coefficients between the
squeezed, or generalized harmonic, and the Fock states are explicitly evaluated
in terms of hypergeometric functions. The corresponding photons statistics are
discussed and some applications to quantum optics, cavity quantum
electrodynamics, and superfocusing in channeling scattering are mentioned.
Explicit solutions of the Heisenberg equations for radiation field operators
with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys.,
Special Issue celebrating the 20th anniversary of quantum state engineering
(R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201