26 research outputs found

    SWKB Quantization Rules for Bound States in Quantum Wells

    Get PDF
    In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix formulation of the Bohr-Sommerfield quantization rule has been applied to the study of bound states in one dimension quantum wells. Here we study these potentials in the frame work of supersymmetric WKB (SWKB) quantization approximation and find that SWKB quantization rule is superior to the modified Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.Comment: 8 page

    An effective singular oscillator for Duffin-Kemmer-Petiau particles with a nonminimal vector coupling: a two-fold degeneracy

    Full text link
    Scalar and vector bosons in the background of one-dimensional nonminimal vector linear plus inversely linear potentials are explored in a unified way in the context of the Duffin-Kemmer-Petiau theory. The problem is mapped into a Sturm-Liouville problem with an effective singular oscillator. With boundary conditions emerging from the problem, exact bound-state solutions in the spin-0 sector are found in closed form and it is shown that the spectrum exhibits degeneracy. It is shown that, depending on the potential parameters, there may or may not exist bound-state solutions in the spin-1 sector.Comment: 1 figure. arXiv admin note: substantial text overlap with arXiv:1009.159

    The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity

    Get PDF
    We describe a six-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. We show that the product of the variances attains the required minimum value 1/4 only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and the Fock states are explicitly evaluated in terms of hypergeometric functions. The corresponding photons statistics are discussed and some applications to quantum optics, cavity quantum electrodynamics, and superfocusing in channeling scattering are mentioned. Explicit solutions of the Heisenberg equations for radiation field operators with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys., Special Issue celebrating the 20th anniversary of quantum state engineering (R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201
    corecore