7,089 research outputs found

    The split-operator technique for the study of spinorial wavepacket dynamics

    Full text link
    The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagating wave functions describing Schr\"odinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure

    Wavepacket scattering on graphene edges in the presence of a (pseudo) magnetic field

    Full text link
    The scattering of a Gaussian wavepacket in armchair and zigzag graphene edges is theoretically investigated by numerically solving the time dependent Schr\"odinger equation for the tight-binding model Hamiltonian. Our theory allows to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well know skipping orbits are observed. However, our results demonstrate that in the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an armchair edge results in a non-propagating edge state.Comment: 8 pages, 7 figure

    Simplified model for the energy levels of quantum rings in single layer and bilayer graphene

    Full text link
    Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model, by solving the Dirac equation for a zero width ring geometry, i.e. by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a non-zero gap in the spectrum. Our minimal model gives insight in the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.Comment: To appear in Phys. Rev.

    All-strain based valley filter in graphene nanoribbons using snake states

    Full text link
    A pseudo-magnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudo-magnetic fields point towards opposite directions in the K and K' valleys, leading to valley polarized snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define the stress distribution along the graphene ribbon.Comment: 8 pages, 6 figure

    Wave packet dynamics and valley filter in strained graphene

    Full text link
    The time evolution of a wavepacket in strained graphene is studied within the tight-binding model and continuum model. The effect of an external magnetic field, as well as a strain-induced pseudo-magnetic field, on the wave packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave packet consisting of momenta around the K and K' Dirac points, the outgoing wave packet exhibits momenta in only one of these Dirac points, while the components of the packet that belong to the other Dirac point are reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave packet exhibits permanent spatial oscillations.Comment: 13 pages, 10 figure

    Conditions for non-monotonic vortex interaction in two-band superconductors

    Full text link
    We describe a semi-analytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain - superconductor interface energy, in analogy with the conventional differentiation between type-I and type-II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ\kappa^*, different from the standard κ\kappa of a bulk superconductor. This opens the possibility for non-monotonic vortex-vortex interaction, which is temperature-dependent, and can be further tuned by alterations of the material on the microscopic scale

    Electrostatics of electron-hole interactions in van der Waals heterostructures

    Full text link
    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poissons equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.Comment: 10 pages, 8 figure
    corecore