28 research outputs found

    Evolution of the superposition of displaced number states with the two-atom multiphoton Jaynes-Cummings model: interference and entanglement

    Full text link
    In this paper we study the evolution of the two two-level atoms interacting with a single-mode quantized radiation field, namely, two-atom multiphoton Jaynes-Cummings model when the radiation field and atoms are initially prepared in the superpostion of displaced number states and excited atomic states, respectively. For this system we investigate the atomic inversion, Wigner function, phase distribution and entanglement.Comment: 18 pages, 17 figure

    The revival-collapse phenomenon in the quadrature field components of the two-mode multiphoton Jaynes-Cummings model

    Full text link
    In this paper we consider a system consisting of a two-level atom in an excited state interacting with two modes of a radiation field prepared initially in ll-photon coherent states. This system is described by two-mode multiphoton (, i.e., k1,k2k_1, k_2) Jaynes-Cummings model (JCM). For this system we investigate the occurrence of the revival-collapse phenomenon (RCP) in the evolution of the single-mode, two-mode, sum and difference quadrature squeezing. We show that there is a class of states for which all these types of squeezing exhibit RCP similar to that involved in the corresponding atomic inversion. Also we show numerically that the single-mode squeezing of the first mode for (k1,k2)=(3,1)(k_1,k_2)=(3,1) provides RCP similar to that of the atomic inversion of the case (k1,k2)=(1,1)(k_1,k_2)=(1,1), however, sum and difference squeezing give partial information on that case. Moreover, we show that single-mode, two-mode and sum squeezing for the case (k1,k2)=(2,2)(k_1,k_2)=(2,2) provide information on the atomic inversion of the single-mode two-photon JCM. We derive the rescaled squeezing factors giving accurate information on the atomic inversion for all cases. The consequences of these results are that the homodyne and heterodyne detectors can be used to detect the RCP for the two-mode JCM.Comment: 18 pages, 6 figure

    Marginal and density atomic Wehrl entropies for the Jaynes-Cummings model

    Full text link
    In this paper, we develop the notion of the marginal and density atomic Wehrl entropies for two-level atom interacting with the single mode field, i.e. Jaynes-Cummings model. For this system we show that there are relationships between these quantities and both of the information entropies and the von Neumann entropy.Comment: 13 pages, 3 figures, this is the final versio

    Linear atomic quantum coupler

    Full text link
    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-mode JCM.Comment: 14 pages, 3 figures; comments are most welcom

    Variance squeezing and entanglement of the XX central spin model

    Full text link
    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XXXX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.Comment: 19 pages,8 figure

    On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes-Cummings model

    Full text link
    In this paper we discuss the quantum properties for superposition of squeezed displaced number states against multiphoton Jaynes-Cummings model (JCM). In particular, we investigate atomic inversion, photon-number distribution, purity, quadrature squeezing, Mandel QQ parameter and Wigner function. We show that the quadrature squeezing for three-photon absorption case can exhibit revivals and collapses typical to those occurring in the atomic inversion for one-photon absorption case. Also we prove that for odd number absorption parameter there is a connection between the evolution of the atomic inversion and the evolution of the Wigner function at the origin in phase space. Furthermore, we show that the nonclassical states whose the Wigner functions values at the origins are negative will be always nonclassical when they are evolving through the JCM with even absorption parameter. Also we demonstrate that various types of cat states can be generated via this system.Comment: 27 pages, 10 figure
    corecore