550 research outputs found
Photoelasticity of sodium silicate glass from first principles
Based on density-functional perturbation theory we have computed the
photoelastic tensor of a model of sodium silicate glass of composition
(NaO)(SiO) (NS3). The model (containig 84 atoms) is
obtained by quenching from the melt in combined classical and Car-Parrinello
molecular dynamics simulations. The calculated photoelastic coefficients are in
good agreement with experimental data. In particular, the calculation
reproduces quantitatively the decrease of the photoelastic response induced by
the insertion of Na, as measured experimentally.
The extension to NS3 of a phenomenological model developed in a previous work
for pure a-SiO indicates that the modulation upon strain of other
structural parameters besides the SiOSi angles must be invoked to explain the
change in the photoelstic response induced by Na
Maximizing nearest neighbour entanglement in finitely correlated qubit--chains
We consider translationally invariant states of an infinite one dimensional
chain of qubits or spin-1/2 particles. We maximize the entanglement shared by
nearest neighbours via a variational approach based on finitely correlated
states. We find an upper bound of nearest neighbour concurrence equal to
C=0.434095 which is 0.09% away from the bound C_W=0.434467 obtained by a
completely different procedure. The obtained state maximizing nearest neighbour
entanglement seems to approximate the maximally entangled mixed states (MEMS).
Further we investigate in detail several other properties of the so obtained
optimal state.Comment: 12 pages, 4 figures, 2nd version minor change
Crystal structure of LaTiO_3.41 under pressure
The crystal structure of the layered, perovskite-related LaTiO_3.41
(La_5Ti_5O_{17+\delta}) has been studied by synchrotron powder x-ray
diffraction under hydrostatic pressure up to 27 GPa (T = 295 K). The
ambient-pressure phase was found to remain stable up to 18 GPa. A sluggish, but
reversible phase transition occurs in the range 18--24 GPa. The structural
changes of the low-pressure phase are characterized by a pronounced anisotropy
in the axis compressibilities, which are at a ratio of approximately 1:2:3 for
the a, b, and c axes. Possible effects of pressure on the electronic properties
of LaTiO_3.41 are discussed.Comment: 5 pages, 6 figure
Basis-independent methods for the two-Higgs-doublet model II. The significance of tan(beta)
In the most general two-Higgs-doublet model (2HDM), there is no distinction
between the two complex hypercharge-one SU(2) doublet scalar fields, Phi_a
(a=1,2). Thus, any two orthonormal linear combinations of these two fields can
serve as a basis for the Lagrangian. All physical observables of the model must
therefore be basis-independent. For example, tan(beta)=/ is
basis-dependent and thus cannot be a physical parameter of the model. In this
paper, we provide a basis-independent treatment of the Higgs sector with
particular attention to the neutral Higgs boson mass-eigenstates, which
generically are not eigenstates of CP. We then demonstrate that all physical
Higgs couplings are indeed independent of tan(beta). In specialized versions of
the 2HDM, tan(beta) can be promoted to a physical parameter of the
Higgs-fermion interactions. In the most general 2HDM, the Higgs-fermion
couplings can be expressed in terms of a number of physical "tan(beta)--like"
parameters that are manifestly basis-independent. The minimal supersymmetric
extension of the Standard Model provides a simple framework for exhibiting such
effects.Comment: 56 pages, 5 tables, with Eq. (65) corrected (erratum to appear in
Physical Review D
Pressure-induced metal-insulator transition in MgV_2O_4
On the basis of experimental thermoelectric power results and ab initio
calculations, we propose that a metal-insulator transition takes place at high
pressure (approximately 6 GPa) in MgV_2O_4.Comment: 2 pages, 3 figures, accepted in Physica B (Strongly Correlated
Electron Systems '07
Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations
We performed high-pressure angle dispersive x-ray diffraction measurements on
Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk
quantities via a solid-state reaction. In the pressure range covered by the
experiments, no evidence of the occurrence of phase transitions was observed.
On top of that, Fe5Si3 was found to compress isotropically, whereas an
anisotropic compression was observed in Ni2Si. The linear incompressibility of
Ni2Si along the c-axis is similar in magnitude to the linear incompressibility
of diamond. This fact is related to the higher valence-electron charge density
of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is
also related to the layered structure of Ni2Si where hexagonal layers of Ni2+
cations alternate with graphite-like layers formed by (NiSi)2- entities. The
experimental results are supported by ab initio total-energy calculations
carried out using density functional theory and the pseudopotential method. For
Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the
hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the
garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si
are also reported and a possible correlation between the bulk modulus of iron
silicides and the coordination number of their minority element is discussed.
Finally, we report novel descriptions of these structures, in particular of the
predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet
Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).Comment: 44 pages, 13 figures, 3 Table
Role of C in MgC_xNi_3 investigated from first principles
The influence of vacancies in the sub-lattice of , on its
structural, electronic and magnetic properties are studied by means of the
density-functional based Korringa-Kohn-Rostoker Green's function method
formulated in the atomic sphere approximation. Disorder is taken into account
by means of coherent-potential approximation. Characterizations representing
the change in the lattice properties include the variation in the equilibrium
lattice constants, bulk modulus and pressure derivative of the bulk modulus,
and that of electronic structure include the changes in the, total, partial and
-resolved density of states. The incipient magnetic properties are
studied by means of fixed-spin moment method of alloy theory, together in
conjunction with the phenomenological Ginzburg-Landau equation for magnetic
phase transition. The first-principles calculations reveal that due to the
breaking of the - bonds, some of the 3d states, which were lowered
in energy due to strong hybridization, are transfered back to higher energies
thereby increasing the itinerant character in the material. The Bloch spectral
densities evaluated at the high symmetry points however reveal that the charge
redistribution is not uniform over the cubic Brillouin zone, as new states are
seen to be created at the point, while a shift in the states on the
energy scale are seen at other high symmetry points
Compositional disorder and its influence on the structural, electronic and magnetic properties of MgC(Ni_{1-x}Co_{x})_{3} alloys using first-principles
First-principles, density-functional based electronic structure calculations
are carried out for MgC(Ni_{1-x}Co_{x})_{3} alloys over the concentration range
0\leq x\leq1, using Korringa-Kohn-Rostoker coherent-potential approximation
(KKR CPA) method in the atomic sphere approximation (ASA). The self-consistent
calculations are used to study the changes as a function of x in the equation
of state parameters, total and partial densities of states, magnetic moment and
the on-site exchange interaction parameter. To study the magnetic properties as
well as its volume dependence, fixed-spin moment calculations in conjunction
with the phenomenological Landau theory are employed. The salient features that
emerge from these calculations are (i) a concentration independent variation in
the lattice parameter and bulk modulus at x~0.75 with an anomaly in the
variation of the pressure derivative of bulk modulus, (ii) the fixed-spin
moment based corrections to the overestimated magnetic ground state for 0.0\leq
x\leq0.3 alloys, making the results consistent with the experiments, and (iii)
the possibility of multiple magnetic states at x~0.75, which, however, requires
further improvements in the calculations
- …