73,423 research outputs found

    Long-term X-ray emission from Swift J1644+57

    Get PDF
    The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, which is decelerated while sweeping the ambient medium. The peak of each pulse is taken as the maximum emission of each reverse shock. With a proper set of parameters, the envelope of peaks in the light curve as well as the spectrum can be modelled nicely.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    GRB afterglows: deep Newtonian phase and its application

    Get PDF
    Gamma-ray burst afterglows have been observed for months or even years in a few cases. It deserves noting that at such late stages, the remnants should have entered the deep Newtonian phase, during which the majority of shock-accelerated electrons will no longer be highly relativistic. To calculate the afterglows, we must assume that the electrons obey a power-law distribution according to their kinetic energy, not simply the Lorentz factor.Comment: Poster at the 4th workshop "Gamma-Ray Bursts in the Afterglow Era" (Rome, 2004), accepted for publication in the proceedings. 4 pages, with 3 figures inserte

    Beaming effects in GRBs and orphan afterglows

    Full text link
    The overall dynamical evolution and radiation mechanism of γ\gamma-ray burst jets are briefly introduced. Various interesting topics concerning beaming in γ\gamma-ray bursts are discussed, including jet structures, orphan afterglows and cylindrical jets. The possible connection between γ\gamma-ray bursts and neutron star kicks is also addressed.Comment: 10 Pages, 4 figures, to appear in a special issue of ApSS. Oral report presented at "The Multiwavelength Approach to Unidentified Gamma-Ray Sources" (Hong Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and G.E. Romero

    Constraining the bulk Lorentz factor from the photosphere emission

    Get PDF
    We propose a direct and model-independent method to constrain the Lorentz factor of a relativistically expanding object, like gamma-ray bursts. Only the measurements, such as thermal component of the emission, the distance and the variable time scale of the light curve, are used. If the uncertainties are considered, we will obtain lower limits of the Lorentz factor instead. We apply this method to GRB 090618 and get a lower limit of the Lorentz factor to be 22. The method can be used to any relativistically moving object, such as gamma-ray bursts, blazars, and soft gamma-ray repeaters, providing the thermal component of the emission being observed.Comment: 10 pages, 1 figur

    Analysis of the 3C445 Soft X-ray Spectrum as Observed by Chandra high-energy gratings

    Full text link
    We present a detailed analysis of the soft X-ray emission of 3C445 using an archival Chandra HETG spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα\alpha line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of the G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X RRC feature in the spectrum seems to prefer to a photoionized environment. The spectrum is subsequently modelled with a photoionization model, and the results are compared with that of a collisional model. Through a detailed analysis on the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are logξ\xi = 3.30.3+0.43.3^{+0.4}_{-0.3} erg cm s1^{-1}, nHn_{H} = 54.5+15×10105^{+15}_{-4.5}\times10^{10} cm3^{-3} and NHN_{H} = 2.51.7+3.8×10202.5^{+3.8}_{-1.7}\times10^{20} cm2^{-2}. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred the radial distance (6 ×\times 101410^{14} - 8 ×\times 101510^{15} cm), we suggest the emission lines originating from matter locate in the broad line region (BLR)

    An unexpectedly low-redshift excess of Swift gamma-ray burst rate

    Get PDF
    Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and can be used to explore the properties of high-redshift universe. It is believed that the long GRBs are associated with the deaths of massive stars. So it is possible to use GRBs to investigate the star formation rate (SFR). In this paper, we use Lynden-Bell's cc^- method to study the luminosity function and rate of \emph{Swift} long GRBs without any assumptions. We find that the luminosity of GRBs evolves with redshift as L(z)g(z)=(1+z)kL(z)\propto g(z)=(1+z)^k with k=2.430.38+0.41k=2.43_{-0.38}^{+0.41}. After correcting the redshift evolution through L0(z)=L(z)/g(z)L_0(z)=L(z)/g(z), the luminosity function can be expressed as ψ(L0)L00.14±0.02\psi(L_0)\propto L_0^{-0.14\pm0.02} for dim GRBs and ψ(L0)L00.70±0.03\psi(L_0)\propto L_0^{-0.70\pm0.03} for bright GRBs, with the break point L0b=1.43×1051 erg s1L_{0}^{b}=1.43\times10^{51}~{\rm erg~s^{-1}}. We also find that the formation rate of GRBs is almost constant at z<1.0z<1.0 for the first time, which is remarkably different from the SFR. At z>1.0z>1.0, the formation rate of GRB is consistent with the SFR. Our results are dramatically different from previous studies. Some possible reasons for this low-redshift excess are discussed. We also test the robustness of our results with Monte Carlo simulations. The distributions of mock data (i.e., luminosity-redshift distribution, luminosity function, cumulative distribution and logNlogS\log N-\log S distribution) are in good agreement with the observations. Besides, we also find that there are remarkable difference between the mock data and the observations if long GRB are unbiased tracers of SFR at z<1.0z<1.0.Comment: 33 pages, 10 figures, 1 table, accepted by ApJ

    A Morphological Approach to the Pulsed Emission from Soft Gamma Repeaters

    Get PDF
    We present a geometrical methodology to interpret the periodical light curves of Soft Gamma Repeaters based on the magnetar model and the numerical arithmetic of the three-dimensional magnetosphere model for the young pulsars. The hot plasma released by the star quake is trapped in the magnetosphere and photons are emitted tangent to the local magnetic field lines. The variety of radiation morphologies in the burst tails and the persistent stages could be well explained by the trapped fireballs on different sites inside the closed field lines. Furthermore, our numerical results suggests that the pulse profile evolution of SGR 1806-20 during the 27 December 2004 giant flare is due to a lateral drift of the emitting region in the magnetosphere.Comment: 7 figures, accepted by Ap

    A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China

    Get PDF
    Cosmic rays interact with the Earth's atmosphere to produce 14^{14}C, which can be absorbed by trees. Therefore, rapid increases of 14^{14}C in tree rings can be used to probe previous cosmic-ray events. By this method, three 14^{14}C rapidly increasing events have been found. Plausible causes of these events include large solar proton events, supernovae or short gamma-ray bursts. However, due to the lack of measurements of 14^{14}C by year, the occurrence frequency of such 14^{14}C rapidly increasing events is poorly known. In addition, rapid increases may be hidden in the IntCal13 data with five-year resolution. Here we report the result of 14^{14}C measurements using an ancient buried tree during the period between BC 3388 and 3358. We find a rapid increase of about 9\textperthousand~ in the 14^{14}C content from BC 3372 to BC 3371. We suggest that this event could originate from a large solar proton event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication
    corecore