234,051 research outputs found

    Orbital-resolved vortex core states in FeSe Superconductors: calculation based on a three-orbital model

    Get PDF
    We study electronic structure of vortex core states of FeSe superconductors based on a t2g_{2g} three-orbital model by solving the Bogoliubov-de Gennes(BdG) equation self-consistently. The orbital-resolved vortex core states of different pairing symmetries manifest themselves as distinguishable structures due to different quasi-particle wavefunctions. The obtained vortices are classified in terms of the invariant subgroups of the symmetry group of the mean-field Hamiltonian in the presence of magnetic field. Isotropic ss and anisotropic ss wave vortices have G5G_5 symmetry for each orbital, whereas dx2−y2d_{x^2-y^2} wave vortices show G6∗G^{*}_{6} symmetry for dxz/yzd_{xz/yz} orbitals and G5∗G^{*}_{5} symmetry for dxyd_{xy} orbital. In the case of dx2−y2d_{x^2-y^2} wave vortices, hybridized-pairing between dxzd_{xz} and dyzd_{yz} orbitals gives rise to a relative phase difference in terms of gauge transformed pairing order parameters between dxz/yzd_{xz/yz} and dxyd_{xy} orbitals, which is essentially caused by a transformation of co-representation of G5∗G^{*}_{5} and G6∗G^{*}_{6} subgroup. The calculated local density of states(LDOS) of dx2−y2d_{x^2-y^2} wave vortices show qualitatively similar pattern with experiment results. The phase difference of π4\frac{\pi}{4} between dxz/yzd_{xz/yz} and dxyd_{xy} orbital-resolved dx2−y2d_{x^2-y^2} wave vortices can be verified by further experiment observation

    Analysis of the X(1576) as a tetraquark state with the QCD sum rules

    Get PDF
    In this letter, we take the point of view that the X(1576) be tetraquark state which consists of a scalar-diquark and an anti-scalar-diquark in relative PP-wave, and calculate its mass in the framework of the QCD sum rules approach. The numerical value of the mass mX=(1.66±0.14)GeVm_X=(1.66\pm 0.14) GeV is consistent with the experimental data, there may be some tetraquark component in the vector meson X(1576).Comment: 6 pages, 1 figure, second version, typos correcte

    ROSAT HRI Detection of the 16 ms Pulsar PSR J0537-6910 Inside SNR N157B

    Full text link
    Based on a deep ROSAT HRI observation, we have detected a pulsed signal in the 0.1-2 keV band from PSR J0537-6910 --- the recently discovered pulsar associated with the supernova remnant N157B in the Large Magellanic Cloud. The measured pulse period 0.01611548182 ms (+- 0.02 ns), Epoch MJD 50540.5, gives a revised linear spin-down rate of 5.1271×10−14ss−15.1271 \times 10^{-14} s s^{-1}, slightly greater than the previously derived value. The narrow pulse shape (FWHM = 10% duty cycle) in the ROSAT band resembles those seen in both XTE and ASCA data (> 2 keV), but there is also marginal evidence for an interpulse. This ROSAT detection enables us to locate the pulsar at R.A., Dec (J2000) = 5h37m47s.2,−69∘10′23′′5^h37^m47^s.2, -69^\circ 10' 23''. With its uncertainty ∼3′′\sim 3'', this position coincides with the centroid of a compact X-ray source. But the pulsed emission accounts for only about 10% of the source luminosity ∼2×1036ergs−1\sim 2 \times 10^{36} ergs^{-1} in the 0.1-2 keV band. These results support our previous suggestions: (1) The pulsar is moving at a high velocity (∼103km/s\sim 10^3 km/s); (2) A bow shock, formed around the pulsar, is responsible for most of the X-ray emission from the source; (3) A collimated outflow from the bow shock region powers a pulsar wind nebula that accounts for an elongated non-thermal radio and X-ray feature to the northwest of the pulsar.Comment: 6 pages including 3 figures. To be published in ApJ

    A NLO analysis on fragility of dihadron tomography in high energy AAAA collisions

    Full text link
    The dihadron spectra in high energy AAAA collisions are studied within the NLO pQCD parton model with jet quenching taken into account. The high pTp_T dihadron spectra are found to be contributed not only by jet pairs close and tangential to the surface of the dense matter but also by punching-through jets survived at the center while the single hadron high pTp_T spectra are only dominated by surface emission. Consequently, the suppression factor of such high-pTp_T hadron pairs is found to be more sensitive to the initial gluon density than the single hadron suppression factor.Comment: 4 pages, 4 figures, proceedings for the 19th international Conference on ultra-relativistic nucleus-nucleus collisions (QM2006), Shanghai, China, November 14-20, 200

    De Sitter Bounces

    Full text link
    By analytically continuing recently-found instantons, we construct time-dependent solutions of Einstein-Maxwell de Sitter gravity which smoothly bounce between two de Sitter phases. These deformations of de Sitter space undergo several stages in their time evolution. Four and five-dimensional de Sitter bounces can be lifted to non-singular time-dependent solutions of M-theory.Comment: Latex, 18 pages, 5 figure

    G359.95-0.04: Pulsar Candidate Near Sgr A*

    Get PDF
    We report the discovery of a prominent nonthermal X-ray feature located near the Galactic center that we identify as an energetic pulsar wind nebula. This feature, G359.95-0.04, lies 1 lyr north of Sgr A* (in projection), is comet-like in shape, and has a power law spectrum that steepens with increasing distance from the putative pulsar. The distinct spectral and spatial X-ray characteristics of the feature are similar to those belonging the rare class of ram-pressure confined pulsar wind nebulae. The luminosity of the nebula at the distance of \sgra, consistent with the inferred X-ray absorptions, is 1 10^{34} ergs s^{-1} in the 2--10 keV energy band. The cometary tail extends back to a region centered at the massive stellar complex IRS 13 and surrounded by enhanced diffuse X-ray emission, which may represent an associated supernova remnant. Furthermore, the inverse Compton scattering of the strong ambient radiation by the nebula consistently explains the observed TeV emission from the Galactic center. We also briefly discuss plausible connections of G359.95-0.04 to other high-energy sources in the region, such as the young stellar complex IRS 13 and SNR Sgr A East.Comment: 11 pages, accepted for publication in MNRAS, higher resolution version at http://www.astro.umass.edu/~wqd/papers/xcomet.pd
    • …
    corecore