33,094 research outputs found
Robust filtering with randomly varying sensor delay: The finite-horizon case
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we consider the robust filtering problem for discrete time-varying systems with delayed sensor measurement subject to norm-bounded parameter uncertainties. The delayed sensor measurement is assumed to be a linear function of a stochastic variable that satisfies the Bernoulli random binary distribution law. An upper bound for the actual covariance of the uncertain stochastic parameter system is derived and used for estimation variance constraints. Such an upper bound is then minimized over the filter parameters for all stochastic sensor delays and admissible deterministic uncertainties. It is shown that the desired filter can be obtained in terms of solutions to two discrete Riccati difference equations of a form suitable for recursive computation in online applications. An illustrative example is presented to show the applicability of the proposed method
Insulator-metal transition shift related to magnetic polarons in La0.67-xYxCa0.33MnO3
The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3
(0 <= x <= 0.14) system. It was found that the transition temperature Tp almost
linearly moves to higher temperature as H increases. Electron spin resonance
confirms that above Tp, there exist ferromagnetic clusters. From the magnetic
polaron point of view, the shift of Tp vs. H was understood, and it was
estimated that the size of the magnetic polaron is of 9.7~15.4 angstrom which
is consistent with the magnetic correlation length revealed by the small-angle
neutron-scattering technique. The transport properties at temperatures higher
than Tp conform to the variable-range hopping mechanism.Comment: 22 pages, 6 figures, pdf, to be published in Euro. Phys. J.
- …