111,985 research outputs found

    S^1-wrapped D3-branes on Conifolds

    Get PDF
    We construct a D3-brane wrapped on S^1, which is fibred over the resolved conifold as its transverse space. Whereas a fractional D3-brane on the resolved conifold is not supersymmetric and has a naked singularity, our solution is supersymmetric and regular everywhere. We also consider an S1S^1-wrapped D3-brane on the resolved cone over T^{1,1}/Z_2, as well as on the deformed conifold. In the former case, we obtain a regular supergravity dual to a certain four-dimensional field theory whose Lorentz and conformal symmetries are broken in the IR region and restored in the UV limit.Comment: Latex, 14 pages, minor correction

    Absorption by Extremal D3-branes

    Get PDF
    The absorption in the extremal D3-brane background is studied for a class of massless fields whose linear perturbations leave the ten-dimensional background metric unperturbed, as well as the minimally-coupled massive scalar. We find that various fields have the same absorption probability as that of the dilaton-axion system, which is given exactly via the Mathieu equation. We analyze the features of the absorption cross-sections in terms of effective Schr\"odinger potentials, conjecture a general form of the dual effective potentials, and provide explicit numerical results for the whole energy range. As expected, all partial-wave absorption probabilities tend to zero (one) at low (large) energies, and exhibit an oscillatory pattern as a function of energy. The equivalence of absorption probabilities for various modes has implications for the correlation functions on the field, including subleading contributions on the field-theory side. In particular, certain half-integer and integer spin fields have identical absorption probabilities, thus providing evidence that the corresponding operator pairs on the field theory side belong to the same supermultiplets.Comment: Latex, 9 figures and 17 page

    Isothermal Shock Formation in Non-Equatorial Accretion Flows around Kerr Black Holes

    Full text link
    We explore isothermal shock formation in non-equatorial, adiabatic accretion flows onto a rotating black hole, with possible application to some active galactic nuclei (AGNs). The isothermal shock jump conditions as well as the regularity condition, previously developed for one-dimensional (1D) flows in the equatorial plane, are extended to two-dimensional (2D), non-equatorial flows, to explore possible geometrical effects. The basic hydrodynamic equations with these conditions are self-consistently solved in the context of general relativity to explore the formation of stable isothermal shocks. We find that strong shocks are formed in various locations above the equatorial plane, especially around a rapidly-rotating black hole with the prograde flows (rather than a Schwarzschild black hole). The retrograde flows are generally found to develop weaker shocks. The energy dissipation across the shock in the hot non-equatorial flows above the cooler accretion disk may offer an attractive illuminating source for the reprocessed features, such as the iron fluorescence lines, which are often observed in some AGNs.Comment: 22 pages with 11 figures, presented at 5th international conference on high energy density laboratory astrophysics in Tucson, Arizona. accepted to Ap

    Smooth Cosmologies from M-theory

    Full text link
    We review two ways in which smooth cosmological evolution between two de Sitter phases can be obtained from M/string-theory. Firstly, we perform a hyperbolic reduction of massive IIA* theory to D=6 N=(1,1) SU(2)xU(1) gauged de Sitter supergravity, which supports smooth cosmological evolution between dS_4 x S^2 and a dS_6-type geometry. Secondly, we obtain four-dimensional de Sitter gravity with SU(2) Yang-Mills gauge fields from a hyperbolic reduction of standard eleven-dimensional supergravity. The four-dimensional theory supports smooth cosmological evolution between dS_2 x S^2 and a dS_4-type geometry. Although time-dependent, these solutions arise from a first-order system via a superpotential construction. For appropriate choices of charges, these solutions describe an expanding universe whose expansion rate is significantly larger in the past than in the future, as required for an inflationary model.Comment: Latex, 7 pages, Contribution to Quantum Theory and Symmetries

    Non-singular Twisted S-branes From Rotating Branes

    Get PDF
    We show that rotating p-brane solutions admit an analytical continuation to become twisted Sp-branes. Although a rotating p-brane has a naked singularity for large angular momenta, the corresponding S-brane configuration is regular everywhere and exhibits a smooth bounce between two phases of Minkowski spacetime. If the foliating hyperbolic space of the transverse space is of even dimension, such as for the twisted SM5-brane, then for an appropriate choice of parameters the solution smoothly flows from a warped product of two-dimensional de Sitter spacetime, five-dimensional Euclidean space and a hyperbolic 4-space in the infinite past to Minkowski spacetime in the infinite future. We also show that non-singular S-Kerr solutions can arise from higher-dimensional Kerr black holes, so long as all (all but one) angular momenta are non-vanishing for even (odd) dimensions.Comment: Latex, 20 page

    The (1+1)-dimensional Massive sine-Gordon Field Theory and the Gaussian Wave-functional Approach

    Full text link
    The ground, one- and two-particle states of the (1+1)-dimensional massive sine-Gordon field theory are investigated within the framework of the Gaussian wave-functional approach. We demonstrate that for a certain region of the model-parameter space, the vacuum of the field system is asymmetrical. Furthermore, it is shown that two-particle bound state can exist upon the asymmetric vacuum for a part of the aforementioned region. Besides, for the bosonic equivalent to the massive Schwinger model, the masses of the one boson and two-boson bound states agree with the recent second-order results of a fermion-mass perturbation calculation when the fermion mass is small.Comment: Latex, 11 pages, 8 figures (EPS files
    corecore