22,896 research outputs found
Efficient spin control in high-quality-factor planar micro-cavities
A semiconductor microcavity embedding donor impurities and excited by a laser
field is modelled. By including general decay and dephasing processes, and in
particular cavity photon leakage, detailed simulations show that control over
the spin dynamics is significally enhanced in high-quality-factor cavities, in
which case picosecond laser pulses may produce spin-flip with high-fidelity
final states.Comment: 6 pages, 4 figure
Dynamics of the excitations of a quantum dot in a microcavity
We study the dynamics of a quantum dot embedded in a three-dimensional
microcavity in the strong coupling regime in which the quantum dot exciton has
an energy close to the frequency of a confined cavity mode. Under the
continuous pumping of the system, confined electron and hole can recombine
either by spontaneous emission through a leaky mode or by stimulated emission
of a cavity mode that can escape from the cavity. The numerical integration of
a master equation including all these effects gives the dynamics of the density
matrix. By using the quantum regression theorem, we compute the first and
second order coherence functions required to calculate the photon statistics
and the spectrum of the emitted light. Our main result is the determination of
a range of parameters in which a state of cavity modes with poissonian or
sub-poissonian (non-classical) statistics can be built up within the
microcavity. Depending on the relative values of pumping and rate of stimulated
emission, either one or two peaks close to the excitation energy of the dot
and/or to the natural frequency of the cavity are observed in the emission
spectrum. The physics behind these results is discussed
Dynamics of Quasi-ordered Structure in a Regio-regulated pi-Conjugated Polymer:Poly(4-methylthiazole-2,5-diyl)
Dynamics of regio-regulated Poly(4-methylthiazole-2,5-diyl) [HH-P4MeTz] was
inves tigated by solid-state 1H, 2D, 13C NMR spectroscopies, and differential
scanning calorimetry(DSC) measurements. DSC, 2D quadrupolar echo NMR, 13C
cross-polarization and magic-angle spinning(CPMAS) NMR, and 2D spin-echo(2DSE)
CPMAS NMR spectroscopy suggest existence of a quasi-ordered phase in which
backbone twists take place with weakened pi-stackings. Two-dimensional exchange
2D NMR(2DEX) detected slow dynamics with a rate of an order of 10^2Hz for the
CD_3 group in d_3-HH-P4MeTz at 288K. The frequency dependence of proton
longitudinal relaxation rate at 288K shows a omega^-1/2 dependence, which is
due to the one-dimensional diffusion-like motion of backbone conformational
modulation waves. The diffusion rate was estimated as 3+/-2 GHz, which was
approximately 10^7 times larger than that estimated by 2DEX NMR measurements.
These results suggest that there exists anomalous dispersion of modulation
waves in HH-P4MeTz. The one-dimensional group velocity of the wave packet is
responsible for the behavior of proton longitudinal relaxation time. On the
other hand, the 2DEX NMR is sensitive to phase velocity of the nutation of
methyl groups that is associated with backbone twists. From proton T_1 and T_2
measurements, the activation energy was estimated as 2.9 and 3.4 kcal/mol,
respectively. These were in agreement with 3.0 kcal/mol determined by
Moller-Plesset(MP2) molecular orbital(MO) calculation. We also performed
chemical shielding calculation of the methyl-carbon in order to understand
chemical shift tensor behavior, leading to the fact that a quasi-ordered phase
coexist with the crystalline phase.Comment: 14 pages, 11 figures, to appear in Phys.Rev.
Elementary Excitations of Heisenberg Ferrimagnetic Spin Chains
We numerically investigate elementary excitations of the Heisenberg
alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically
coupled to each other. Employing a recently developed efficient Monte Carlo
technique as well as an exact diagonalization method, we verify the spin-wave
argument that the model exhibits two distinct excitations from the ground state
which are gapless and gapped. The gapless branch shows a quadratic dispersion
in the small-momentum region, which is of ferromagnetic type. With the
intention of elucidating the physical mechanism of both excitations, we make a
perturbation approach from the decoupled-dimer limit. The gapless branch is
directly related to spin 1's, while the gapped branch originates from
cooperation of the two kinds of spins.Comment: 7 pages, 7 Postscript figures, RevTe
Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit interaction
A novel spin filtering in two-dimensional electron system with nonuniform
spin-orbit interactions (SOI) is theoretically studied. The strength of SOI is
modulated perpendicular to the charge current. A spatial gradient of effective
magnetic field due to the nonuniform SOI causes the Stern-Gerlach type spin
separation. The direction of the polarization is perpendicular to the current
and parallel to the spatial gradient. Almost 100 % spin polarization can be
realized even without applying any external magnetic fields and without
attaching ferromagnetic contacts. The spin polarization persists even in the
presence of randomness.Comment: 6 pages, 5 figures (2 color figures), to appear in Phys. Rev. B,
Rapid Commu
Heterogeneous Diffusion in Highly Supercooled Liquids
The diffusivity of tagged particles is demonstrated to be very heterogeneous
on time scales comparable to or shorter than the relaxation time
( the stress relaxation time) in a highly supercooled
liquid via 3D molecular dynamics simulation. The particle motions in the
relatively active regions dominantly contribute to the mean square
displacement, giving rise to a diffusion constant systematically larger than
the Einstein-Stokes value. The van Hove self-correlation function is
shown to have a long distance tail which can be scaled in terms of
for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in
the active regions. However, the diffusion process eventually becomes
homogeneous on time scales longer than the life time of the heterogeneity
structure ().Comment: 4 pages, 5 figure
Hidden Order and Dimerization Transition in Chains
We study ground state properties of the quantum antiferromagnetic chain
with a bond alternation H = \sum_{j} [ 1 + \delta (-1)^j ] \mbox{\boldmath
$S$}_{j} \cdot \mbox{\boldmath $S$}_{j+1} by a Quantum Monte Carlo
calculation. We find that the hidden symmetry is broken for
while it is unbroken in the other regions. This confirms
the successive dimerization transitions first predicted by Affleck and Haldane.
Our result shows that these transitions can be understood in terms of the
hidden symmetry breaking, as was discussed using the
Valence-Bond-Solid states. Furthermore, we find that the behavior of the
generalized string correlation is qualitatively very similar to that in the
Valence-Bond-Solid states, including the location of zeroes as a function of
the angle parameter.Comment: 3 pages (LaTex with jpsj-style files
(ftp://ftp.u-tokyo.ac.jp/pub/SOCIETY/JPSJ)) and 1 Postscript figur
Magnetic Properties of Quantum Ferrimagnetic Spin Chains
Magnetic susceptibilities of spin- ferrimagnetic Heisenberg chains are
numerically investigated. It is argued how the ferromagnetic and
antiferromagnetic features of quantum ferrimagnets are exhibited as functions
of . Spin- ferrimagnetic chains behave like combinations of
spin- ferromagnetic and spin- antiferromagnetic chains provided
.Comment: 4 pages, 7 PS figures, to appear in Phys. Rev. B: Rapid Commu
Roles of intrinsic anisotropy and pi-band pairbreaking effects on critical currents in tilted c-axis MgB2 films probed by magneto-optical and transport measurements
Investigations of MgB2 and Fe-based superconductors in recent years have
revealed many unusual effects of multiband superconductivity but manifestations
of anisotropic multiband effects in the critical current density Jc have not
been addressed experimentally, mostly because of the difficulties to measure Jc
along the c-axis. To investigate the effect of very different intrinsic
anisotropies of sigma and pi electron bands in MgB2 on current transport, we
grew epitaxial films with tilted c-axis (THETA ~ 19.5{\deg}), which enabled us
to measure the components of Jc both along the ab-plane and the c-axis using
magneto-optical and transport techniques. These measurements were combined with
scanning and transmission electron microscopy, which revealed terraced steps on
the surface of the c-axis tilted films. The measured field and temperature
dependencies of the anisotropic Jc(H) show that Jc,L parallel to the terraced
steps is higher than Jc,T perpendicular to the terraced steps, and Jc of
thinner films (50 nm) obtained from transport experiments at 0.1 T reaches ~10%
of the depairing current density Jd in the ab plane, while magneto-optical
imaging revealed much higher Jc at lower fields. To analyze the experimental
data we developed a model of anisotropic vortex pinning which accounts for the
observed behavior of Jc in the c-axis tilted films and suggests that the
apparent anisotropy of Jc is affected by current pairbreaking effects in the
weaker {\pi} band. Our results indicate that the out-of-plane current transport
mediated by the {\pi} band could set the ultimate limit of Jc in MgB2
polycrystals.Comment: 21 pges, 13 figure
Spin-Wave Description of Haldane-gap antiferromagnets
Modifying the conventional antiferromagnetic spin-wave theory which is
plagued by the difficulty of the zero-field sublattice magnetizations diverging
in one dimension, we describe magnetic properties of Haldane-gap
antiferromagnets. The modified spin waves, constituting a grand canonical
bosonic ensemble so as to recover the sublattice symmetry, not only depict well
the ground-state correlations but also give useful information on the
finite-temperature properties.Comment: to be published in J. Phys. Soc. Jpn. Vol. 72, No. 4 (2003
- …
