182,496 research outputs found

    Band structure and magnetotransport of a two-dimensional electron gas in the presence of spin-orbit interaction

    Full text link
    The band structure and magnetotransport of a two-dimensional electron gas (2DEG), in the presence of the Rashba (RSOI) and Dresselhaus (DSOI) terms of the spin-orbit interaction and of a perpendicular magnetic field, is investigated. Exact and approximate analytical expressions for the band structure are obtained and used to calculate the density of states (DOS) and the longitudinal magnetoresitivity assuming a Gaussian type of level broadening. The interplay between the Zeeman coupling and the two terms of the SOI is discussed. If the strengths α\alpha and β \beta, of the RSOI and DSOI, respectively, are equal and the gg factor vanishes, the two spin states are degenerate and a shifted Landau-level structure appears. With the increase of the difference αβ\alpha- \beta, a novel beating pattern of the DOS and of the Shubnikov-de Haas (SdH) oscillations appears distinctly different from that occurring when one of these strengths vanishes

    Finite-size scaling exponents and entanglement in the two-level BCS model

    Full text link
    We analyze the finite-size properties of the two-level BCS model. Using the continuous unitary transformation technique, we show that nontrivial scaling exponents arise at the quantum critical point for various observables such as the magnetization or the spin-spin correlation functions. We also discuss the entanglement properties of the ground state through the concurrence which appears to be singular at the transition.Comment: 4 pages, 3 figures, published versio

    Beating of the oscillations in the transport coefficients of a one-dimensionally periodically modulated two-dimensional electron gas in the presence of spin-orbit interaction

    Full text link
    Transport properties of a two-dimensional electron gas (2DEG) are studied in the presence of a perpendicular magnetic field BB, of a {\it weak} one-dimensional (1D) periodic potential modulation, and of the spin-orbit interaction (SOI) described only by the Rashba term. In the absence of the modulation the SOI mixes the spin-up and spin-down states of neighboring Landau levels into two new, unequally spaced energy branches. The levels of these branches broaden into bands in the presence of the modulation and their bandwidths oscillate with the field BB. Evaluated at the Fermi energy, the nn-th level bandwidth of each series has a minimum or vanishes at different values of the field BB. In contrast with the 1D-modulated 2DEG without SOI, for which only one flat-band condition applies, here there are two flat-band conditions that can change considerably as a function of the SOI strength α\alpha and accordingly influence the transport coefficients of the 2DEG. The phase and amplitude of the Weiss and Shubnikov-de Haas (SdH) oscillations depend on the strength α\alpha. For small values of α\alpha both oscillations show beating patterns. Those of the former are due to the independently oscillating bandwidths whereas those of the latter are due to modifications of the density of states, exhibit an even-odd filling factor transition, and are nearly independent of the modulation strength. For strong values of α\alpha the SdH oscillations are split in two

    Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model

    Full text link
    We analyze the finite-size scaling exponents in the Lipkin-Meshkov-Glick model by means of the Holstein-Primakoff representation of the spin operators and the continuous unitary transformations method. This combination allows us to compute analytically leading corrections to the ground state energy, the gap, the magnetization, and the two-spin correlation functions. We also present numerical calculations for large system size which confirm the validity of this approach. Finally, we use these results to discuss the entanglement properties of the ground state focusing on the (rescaled) concurrence that we compute in the thermodynamical limit.Comment: 20 pages, 9 figures, published versio

    Bandgap Engineering of Strained Monolayer and Bilayer MoS2

    Full text link
    We report the influence of uniaxial tensile mechanical strain in the range 0-2.2% on the phonon spectra and bandstructures of monolayer and bilayer molybdenum disulfide (MoS2) two-dimensional crystals. First, we employ Raman spectroscopy to observe phonon softening with increased strain, breaking the degeneracy in the E' Raman mode of MoS2, and extract a Gr\"uneisen parameter of ~1.06. Second, using photoluminescence spectroscopy we measure a decrease in the optical band gap of MoS2 that is roughly linear with strain, ~45 meV% strain for monolayer MoS2 and ~120 meV% strain for bilayer MoS2. Third, we observe a pronounced strain-induced decrease in the photoluminescence intensity of monolayer MoS2 that is indicative of the direct-to-indirect transition of the character of the optical band gap of this material at applied strain of ~1.5%, a value supported by first-principles calculations that include excitonic effects. These observations constitute the first demonstration of strain engineering the band structure in the emergent class of two-dimensional crystals, transition-metal dichalcogenides.Comment: Article appears in print in Nanoletter

    Pinning control of fractional-order weighted complex networks

    Get PDF
    In this paper, we consider the pinning control problem of fractional-order weighted complex dynamical networks. The well-studied integer-order complex networks are the special cases of the fractional-order ones. The network model considered can represent both directed and undirected weighted networks. First, based on the eigenvalue analysis and fractional-order stability theory, some local stability properties of such pinned fractional-order networks are derived and the valid stability regions are estimated. A surprising finding is that the fractional-order complex networks can stabilize itself by reducing the fractional-order q without pinning any node. Second, numerical algorithms for fractional-order complex networks are introduced in detail. Finally, numerical simulations in scale-free complex networks are provided to show that the smaller fractional-order q, the larger control gain matrix D, the larger tunable weight parameter , the larger overall coupling strength c, the more capacity that the pinning scheme may possess to enhance the control performance of fractional-order complex networks

    Spin-transfer torques in anti-ferromagnetic metals from first principles

    Full text link
    In spite of the absence of a macroscopic magnetic moment, an anti-ferromagnet is spin-polarized on an atomic scale. The electric current passing through a conducting anti-ferromagnet is polarized as well, leading to spin-transfer torques when the order parameter is textured, such as in anti-ferromagnetic non-collinear spin valves and domain walls. We report a first principles study on the electronic transport properties of anti-ferromagnetic systems. The current-induced spin torques acting on the magnetic moments are comparable with those in conventional ferromagnetic materials, leading to measurable angular resistances and current-induced magnetization dynamics. In contrast to ferromagnets, spin torques in anti-ferromagnets are very nonlocal. The torques acting far away from the center of an anti-ferromagnetic domain wall should facilitate current-induced domain wall motion.Comment: The paper has substantially been rewritten, 4 pages, 5 figure

    Topological phases and fractional excitations of the exciton condensate in a special class of bilayer systems

    Full text link
    We study the exciton condensate in zero temperature limit in a special class of electron-hole bilayer systems adjacent to insulating ferromagnetic films. With the self-consistent mean-field approximation, we find that the Rashba spin-orbit interaction in the electron and hole layers can induce the p \pm ip or p pairing states depending on the different magnetization of the overlapped ferromagnetic films. Correspondingly, the topologically nontrivial or trivial phases emerge. Furthermore, in the topologically nontrivial phase, the quasiparticle excitations of the U(1) vortex are attached to fractional quantum numbers and obey Abelian statistics.Comment: 7 pages, 5 figure
    corecore