29,958 research outputs found

    Fabrication of Embedded Microvalve on PMMA Microfluidic Devices through Surface Functionalization

    Get PDF
    The integration of a PDMS membrane within orthogonally placed PMMA microfluidic channels enables the pneumatic actuation of valves within bonded PMMA-PDMS-PMMA multilayer devices. Here, surface functionalization of PMMA substrates via acid catalyzed hydrolysis and air plasma corona treatment were investigated as possible techniques to permanently bond PMMA microfluidic channels to PDMS surfaces. FTIR and water contact angle analysis of functionalized PMMA substrates showed that air plasma corona treatment was most effective in inducing PMMA hydrophilicity. Subsequent fluidic tests showed that air plasma modified and bonded PMMA multilayer devices could withstand fluid pressure at an operational flow rate of 9 mircoliters/min. The pneumatic actuation of the embedded PDMS membrane was observed through optical microscopy and an electrical resistance based technique. PDMS membrane actuation occurred at pneumatic pressures of as low as 10kPa and complete valving occurred at 14kPa for 100 micrometers x 100 micrometers channel cross-sections.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Laparoscopic repair of incisional hernia.

    Get PDF
    A 75-year-old man developed an incisional hernia over the upper abdomen following a wedge resection of a gastric stromal tumour in 1996. This is the first published report of a successful repair of an incisional hernia via a laparoscopic intraperitoneal on-lay technique using GORE-TEX DualMesh material in Hong Kong. Compared with conventional open repair of incisional hernia, long incisions and wound tension are avoided using the laparoscopic approach. This translates into a reduced risk of wound-related complications and facilitates recovery. In selected cases, minimally invasive surgery is a safe technique for the repair of incisional hernias.published_or_final_versio

    An ultrafast 1 x M all-optical WDM packet-switched router based on the PPM header address

    Get PDF
    This paper presents an all-optical 1 x M WDM router architecture for packet routing at multiple wavelengths simultaneously, with no wavelength conversion modules. The packet header address adopted is based on the pulse position modulation (PPM) format, thus enabling the use of only a singlebitwise optical AND gate for fast header address correlation. It offers multicast as well as broadcast capabilities. It is shown that a high speed packet routing at 160 Gb/s can be achieved with a low channel crosstalk (CXT) of ~ -27 dB at a channel spacing of greater than 0.4 THz and a demultiplexer bandwidth of 500 GHz
    • …
    corecore