217,226 research outputs found

    A nonperturbative parametrization and scenario for EFT renormalization

    Full text link
    We present a universal form of the TT-matrices renormalized in nonperturbative regime and the ensuing notions and properties that fail conventional wisdoms. A universal scale is identified and shown to be renormalization group invariant. The effective range parameters are derived in a nonperturbative scenario with some new predictions within the realm of contact potentials. Some controversies are shown to be due to the failure of conventional wisdoms.Comment: 5 pages, no figure, to appear in Europhys. Let

    Guest editorial: Memetic computing in the presence of uncertainties

    Get PDF
    Copyright @ Springer-Verlag 2010.The Guest Editors acknowledge the research support by the Academy of Finland, Akatemiatutkija 130600, Algorithmic Design Issues in Memetic Computing, and by the UK Engineering and Physical Sciences Research Council (EPSRC) Project: Evolutionary Algorithms for Dynamic Optimisation Problems, under Grant EP/E060722/1

    Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse

    Get PDF
    We study the field-ionization threshold behavior when a Rydberg atom is ionized by a short single-cycle pulse field. Both hydrogen and sodium atoms are considered. The required threshold field amplitude is found to scale \emph{inversely} with the binding energy when the pulse duration becomes shorter than the classical Rydberg period, and, thus, more weakly bound electrons require larger fields for ionization. This threshold scaling behavior is confirmed by both 3D classical trajectory Monte Carlo simulations and numerically solving the time-dependent Schr\"{o}dinger equation. More surprisingly, the same scaling behavior in the short pulse limit is also followed by the ionization thresholds for much lower bound states, including the hydrogen ground state. An empirical formula is obtained from a simple model, and the dominant ionization mechanism is identified as a nonzero spatial displacement of the electron. This displacement ionization should be another important mechanism beyond the tunneling ionization and the multiphoton ionization. In addition, an "ionization window" is shown to exist for the ionization of Rydberg states, which may have potential applications to selectively modify and control the Rydberg-state population of atoms and molecules
    • …
    corecore