10,520 research outputs found
Measurement of ultralow injection current to polymethyl-methacrylate film
2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Reconsideration of Second Harmonic Generation from neat Air/Water Interface: Broken of Kleinman Symmetry from Dipolar Contribution
It has been generally accepted that there are significant quadrupolar and
bulk contributions to the second harmonic generation (SHG) reflected from the
neat air/water interface, as well as common liquid interfaces. Because there
has been no general methodology to determine the quadrupolar and bulk
contributions to the SHG signal from a liquid interface, this conclusion was
reached based on the following two experimental phenomena. Namely, the broken
of the macroscopic Kleinman symmetry, and the significant temperature
dependence of the SHG signal from the neat air/water interface. However,
because sum frequency generation vibrational spectroscopy (SFG-VS) measurement
of the neat air/water interface observed no apparent temperature dependence,
the temperature dependence in the SHG measurement has been reexamined and
proven to be an experimental artifact. Here we present a complete microscopic
analysis of the susceptibility tensors of the air/water interface, and show
that dipolar contribution alone can be used to address the issue of broken of
the macroscopic Kleinman symmetry at the neat air/water interface. Using this
analysis, the orientation of the water molecules at the interface can be
obtained, and it is consistent with the measurement from SFG-VS. Therefore, the
key rationales to conclude significantly quadrupolar and bulk contributions to
the SHG signal of the neat air/water interface can no longer be considered as
valid as before. This new understanding of the air/water interface can shed
light on our understanding of the nonlinear optical responses from other
molecular interfaces as well
Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement
We present a way for symmetric multiparty-controlled teleportation of an
arbitrary two-particle entangled state based on Bell-basis measurements by
using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an
arbitrary two-particle entangled state to a distant receiver, an arbitrary one
of the agents via the control of the others in a network. It will be
shown that the outcomes in the cases that is odd or it is even are
different in principle as the receiver has to perform a controlled-not
operation on his particles for reconstructing the original arbitrary entangled
state in addition to some local unitary operations in the former. Also we
discuss the applications of this controlled teleporation for quantum secret
sharing of classical and quantum information. As all the instances can be used
to carry useful information, its efficiency for qubits approaches the maximal
value.Comment: 9 pages, 3 figures; the revised version published in Physical Review
A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is
adde
Modeling study of soot formation and oxidation in di diesel engine using an improved soot model
Particulate emission is one of the most deleterious pollutants generated by Diesel fuel combustion. The ability to predict soot formation is one of the key elements needed to optimize the engine performance and minimize soot emissions. This paper reports work on developing, a phenomenological soot model to better model the physical and chemical processes of soot formation in Diesel fuel combustion. This hybrid model features that the effect of turbulence on the chemical reaction rate was considered in soot oxidation. Soot formation and oxidation processes were modeled with the application of a hybrid method involving particle turbulent transport controlled rate and soot oxidation rate. Compared with the original soot model, the in-cylinder pressures, heat release rate and soot emissions predicted by this hybrid model agreed better with the experimental results. The verified hybrid model was used to investigate the effect of injection timing on engine performance. The results show that the new soot model predicted reasonable soot spatial profiles within the combustion chamber. The high temperature gas zone in cylinder for hybrid model case is distributed broadly soot and NOx emission dependence on the start-of-injection (SOI) timing. Retarded SOI timing increased the portion of diffusion combustion and the soot concentration increased significantly with retarding of the fuel injection timing. The predicted distributions of soot concentration and particle mass provide some new insights on the soot formation and oxidation processes in direct injection (DI) engines. The hybrid phenomenological soot model shows greater potential for enhancing understanding of combustion and soot formation processes in DI diesel engines. © 2013 Elsevier Ltd. All rights reserved
Relativistic hyperpolarizabilities for atomic H, Li, and Be systems
The hyperpolarizability of an atom is a property that describes the nonlinear
interaction between an atom and an external electric field leading to a
higher-order Stark shift. Accurate evaluations of these coefficients for
various systems are crucial to improve experimental precision in advanced
atom-based clocks. However, there is a dearth of reports on atomic
hyperpolarizabilities, particularly regarding relativistic
hyperpolarizabilities. Thus, in this paper, we use fourth-order perturbation
theory to establish a universal formula for the hyperpolarizability and
calculate the relativistic hyperpolarizabilities of low-lying states for the
monovalent electronic atomic systems H, Li, and Be. The highly accurate
results given here for the H atom could serve as benchmarks for other
theoretical methods.Comment: 12 pages; 1 figur
Ultraviolet RadiationâInduced Cataract in Mice: The Effect of Age and the Potential Biochemical Mechanism
PURPOSE. To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV).
METHODS. Young and old C57BL/6 mice were exposed to broadband UVBĂŸUVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx.
RESULTS. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency.
CONCLUSIONS. The lenses of old mice were more susceptible to UV radiationâinduced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice
Chemical Fingerprinting Profile and Targeted Quantitative Analysis of Phenolic Compounds from Rooibos Tea (Aspalathus linearis) and Dietary Supplements Using UHPLCâPDAâMS
Aspalathus linearis (Burm.f.) R. Dahlgren, commonly known as rooibos tea, was consumed traditionally by the indigenous South African inhabitants as an herbal remedy. Beside antioxidant properties, it displays antiallergic, antispasmodic, and hypoglycemic activities. An ultraâhigh-performance liquid chromatography method coupled with photodiode array and mass spectrometry detectors were developed for the determination of 14 phenolic constituents from leaves and stems of A. linearis. The efficient separation was performed within 30 min at a temperature of 30 °C by using Câ18 column as the stationary phase and water/acetonitrile with 0.05% formic acid as the mobile phase. Method validation for linearity, repeatability, limits of detection, and limits of quantification was achieved. The limits of detection from 0.2â1 ÎŒg/mL were reported for the standard compounds. Their total content varied substantially (1.50â9.85 mg/100 mg sample) in 21 dietary supplements. The presence of regioisomers and diastereomers which coâelute on a variety of stationary phases make separation for quantification purposes challenging. This method was found to be efficient in providing low retention times and excellent resolution for this type of phytochemicals. The established method is suitable for chemical fingerprint analysis of A. linearis and costâeffective for quality control of rooibos tea products
Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state
We present a scheme for symmetric multiparty quantum state sharing of an
arbitrary -qubit state with Greenberger-Horne-Zeilinger states following
some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338
(2005)]. The sender Alice performs Bell-state measurements on her
particles and the controllers need only to take some single-photon product
measurements on their photons independently, not Bell-state measurements, which
makes this scheme more convenient than the latter. Also it does not require the
parties to perform a controlled-NOT gate on the photons for reconstructing the
unknown -qubit state and it is an optimal one as its efficiency for qubits
approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an
arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129
- âŠ