934 research outputs found

    The Origin of the Universe as Revealed Through the Polarization of the Cosmic Microwave Background

    Full text link
    Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habitat. The age-old questions have been transformed into two pressing issues primed for attack in the coming decade: How did the Universe begin? and What physical laws govern the Universe at the highest energies? The clearest window onto these questions is the pattern of polarization in the Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial gravity waves. A detection of the special pattern produced by gravity waves would be not only an unprecedented discovery, but also a direct probe of physics at the earliest observable instants of our Universe. Experiments which map CMB polarization over the coming decade will lead us on our first steps towards answering these age-old questions.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 212 author available at http://cmbpol.uchicago.ed

    Singular values of the Dirac operator in dense QCD-like theories

    Full text link
    We study the singular values of the Dirac operator in dense QCD-like theories at zero temperature. The Dirac singular values are real and nonnegative at any nonzero quark density. The scale of their spectrum is set by the diquark condensate, in contrast to the complex Dirac eigenvalues whose scale is set by the chiral condensate at low density and by the BCS gap at high density. We identify three different low-energy effective theories with diquark sources applicable at low, intermediate, and high density, together with their overlapping domains of validity. We derive a number of exact formulas for the Dirac singular values, including Banks-Casher-type relations for the diquark condensate, Smilga-Stern-type relations for the slope of the singular value density, and Leutwyler-Smilga-type sum rules for the inverse singular values. We construct random matrix theories and determine the form of the microscopic spectral correlation functions of the singular values for all nonzero quark densities. We also derive a rigorous index theorem for non-Hermitian Dirac operators. Our results can in principle be tested in lattice simulations.Comment: 3 references added, version published in JHE

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Search for composite and exotic fermions at LEP 2

    Get PDF
    A search for unstable heavy fermions with the DELPHI detector at LEP is reported. Sequential and non-canonical leptons, as well as excited leptons and quarks, are considered. The data analysed correspond to an integrated luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172 GeV and 161 GeV. The search for pair-produced new leptons establishes 95% confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2, depending on the channel. The search for singly produced excited leptons and quarks establishes upper limits on the ratio of the coupling of the excited fermio

    The High Energy cosmic-Radiation Detector (HERD) Trigger System

    Get PDF
    The High Energy cosmic-Radiation Detection (HERD) facility is a next generation spaceborne detector to be installed onboard the Chinese Space Station for about 10 years. HERD will address major problems in fundamental physics and astrophysics, providing precise measurements of charged-cosmic rays up to PeV energies, performing indirect searches for dark matter in the electron spectrum up to few tens of TeV and monitoring the gamma-ray skymap for surveys and transient searches. HERD is composed of a 3D imaging calorimeter (CALO) surrounded by a scintillating fiber tracker (FIT), a plastic scintillator detector (PSD) and a silicon charge detector (SCD). In addition, a transition radiation detector (TRD) is placed on a lateral side to provide accurate energy calibration. Based on this innovative design, the effective geometric factor of HERD will be one order of magnitud larger than that of current space-based detectors. The HERD trigger strategy is designed to accomplish the scientific goals of the mission, and is based on trigger definitions that rely on the energy deposited in CALO and the PSD. The trigger performances are evaluated using a detailed Monte Carlo simulation that includes the latest HERD geometry. In addition, alternative trigger definitions based on the event topology can be established thanks to the photodiode readout of CALO crystals. The feasibility of these topological triggers is also investigated and presented

    Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP

    Get PDF
    Promptly decaying lightest neutralinos and long-lived staus are searched for in the context of light gravitino scenarios. It is assumed that the stau is the next to lightest supersymmetric particle (NLSP) and that the lightest neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of the production of these particles is found. Hence, lower mass limits for both kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is found to be greater than 71.5 GeV/c^2. In the search for long-lived stau, masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10 to 150 \eVcc . Combining this search with the searches for stable heavy leptons and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc may be set for the stau mas
    corecore