410,334 research outputs found

    On the convergence of autonomous agent communities

    Get PDF
    This is the post-print version of the final published paper that is available from the link below. Copyright @ 2010 IOS Press and the authors.Community is a common phenomenon in natural ecosystems, human societies as well as artificial multi-agent systems such as those in web and Internet based applications. In many self-organizing systems, communities are formed evolutionarily in a decentralized way through agents' autonomous behavior. This paper systematically investigates the properties of a variety of the self-organizing agent community systems by a formal qualitative approach and a quantitative experimental approach. The qualitative formal study by applying formal specification in SLABS and Scenario Calculus has proven that mature and optimal communities always form and become stable when agents behave based on the collective knowledge of the communities, whereas community formation does not always reach maturity and optimality if agents behave solely based on individual knowledge, and the communities are not always stable even if such a formation is achieved. The quantitative experimental study by simulation has shown that the convergence time of agent communities depends on several parameters of the system in certain complicated patterns, including the number of agents, the number of community organizers, the number of knowledge categories, and the size of the knowledge in each category

    Cosmological model of the interaction between dark matter and dark energy

    Full text link
    In this paper, we test the dark matter-dark energy interacting cosmological model with a dynamic equation of state wDE(z)=w0+w1z/(1+z)w_{DE}(z)=w_{0}+w_{1}z/(1+z), using type Ia supernovae (SNe Ia), Hubble parameter data, baryonic acoustic oscillation (BAO) measurements, and the cosmic microwave background (CMB) observation. This interacting cosmological model has not been studied before. The best-fitted parameters with 1σ1 \sigma uncertainties are δ=0.022±0.006\delta=-0.022 \pm 0.006, ΩDM0=0.213±0.008\Omega_{DM}^{0}=0.213 \pm 0.008, w0=1.210±0.033w_0 =-1.210 \pm 0.033 and w1=0.872±0.072w_1=0.872 \pm 0.072 with χmin2/dof=0.990\chi^2_{min}/dof = 0.990. At the 1σ1 \sigma confidence level, we find δ<0\delta<0, which means that the energy transfer prefers from dark matter to dark energy. We also find that the SNe Ia are in tension with the combination of CMB, BAO and Hubble parameter data. The evolution of ρDM/ρDE\rho_{DM}/\rho_{DE} indicates that this interacting model is a good approach to solve the coincidence problem, because the ρDE\rho_{DE} decrease with scale factor aa. The transition redshift is ztr=0.63±0.07z_{tr}=0.63 \pm 0.07 in this model.Comment: 6 pages, 6 figures, published in A&
    corecore