6 research outputs found
Foraging Behaviours of Breeding Arctic Terns Sterna paradisaea and the Impact of Local Weather and Fisheries
This is the final version. Available from Frontiers Media via the DOI in this record. The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.During the breeding season, seabirds are central place foragers and in order to successfully rear chicks they must adjust their foraging behaviours to compensate for extrinsic factors. When foraging, arctic terns Sterna paradisaea are restricted to the first 50 cm of the water column and can only carry a few prey items back to their nests at once. In Iceland, where 20–30% of the global population breed, poor fledging success has been linked to low food availability. Using GPS loggers, we investigated individual foraging behaviours of breeding adults during incubation from a large colony over four seasons. First, we tested whether foraging trip distance or duration was linked to morphology or sex. Second, we examined how trips vary with weather and overlap with commercial fisheries. Our findings reveal that arctic terns travel far greater distances during foraging trips than previously recorded (approximately 7.3 times further), and they forage around the clock. There was inter-annual variability in the foraging locations that birds used, but no relationship between size or sex differences and the distances travelled. We detected no relationship between arctic tern foraging flights and local prevailing winds, and tern heading and speed were unrelated to local wind patterns. We identified key arctic tern foraging areas and found little spatial or temporal overlap with fishing pelagic vessels, but larger home ranges corresponded with years with lower net primary productivity levels. This suggests that whilst changing polar weather conditions may not pose a threat to arctic terns at present, nor might local competition with commercial fisheries for prey, they may be failing to forage in productive areas, or may be affected by synergistic climatic effects on prey abundance and quality. Shifts in pelagic prey distributions as a result of increasing water temperatures and salinities will impact marine top predators in this region, so continued monitoring of sentinel species such as arctic terns is vital.Natural Environment Research Council (NERC)National Geographic Societ
Global warming and arctic terns: Estimating climate change impacts on the world's longest migration
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: Tracking data: The tracking data that were collected and support the findings of this study are available in the Seabird Tracking Database at 2356146398 https://data.seabirdtracking.org/dataset, reference number 1905.
Additional tracking data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.d6080nt and available upon request at https://data.seabirdtracking.org/dataset/739. Environmental variables: The data that support the findings of this study are openly available in JASMIN at https://jasmin.ac.uk/. All CMIP6 model output is freely available on the Earth System Grid Federation (https://esgf.llnl.gov/). Global ocean biogeochemistry hindcast simulations are available on the Copernicus Marine Database (https://resources.marine.copernicus.eu/).Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: ‘middle-of-the-road’ and ‘fossil-fuelled development’ scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a ‘fossil-fuelled development’ scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s−1) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.Natural Environment Research Council (NERC)German Federal Ministry of Education and Research (BMBF)University of BristolScience and Technology Facilities Council (STFC)National Geographi
Hybridization of glaucous gull (Larus hyperboreus) and herring gull (Larus argentatus) in Iceland: mitochondrial and microsatellite data
Large white-headed gulls provide an interesting group of birds for studies of hybridization. The group is composed of 20 species of recent origin, often with weak reproductive barriers. Here we report the results from a study on the glaucous gull Larus hyperboreus, an Arctic species which has been breeding in Iceland for centuries, and the herring gull Larus argentatus which has a wide distribution in Europe but colonized Iceland in 1920s. Previous studies, based on morphological variation indicated hybridization between the two species in Iceland, have been questioned as it may just reflect variation within the species. Here we evaluate whether hybridization has occurred between the two species in Iceland by studying variation in microsatellites and mtDNA. The analysis is based on feathers taken from wings sampled in Iceland over a period of 40 years. The results are compared with samples obtained from East Greenland and published sequences of samples obtained throughout Europe. The genetic analysis reveals a distinctive grouping of the two species, although they present a shallow genealogy and an extensive sharing of the genetic variants between the two species. Several individuals show admixture for molecular markers, which may result from an incomplete lineage sorting although geographical patterns of both mtDNA haplotypes and microsatellites strongly indicate a recent hybridization in Iceland
Data from: Extensive mitochondrial introgression in North American Great Black-backed Gulls (Larus marinus) from the American Herring Gull (Larus smithsonianus) with little nuclear DNA impact
Recent genetic studies have shown that introgression rates among loci may greatly vary according to their location in the genome. In particular, several cases of mito-nuclear discordances have been reported for a wide range of organisms. In the present study, we examine the causes of discordance between mitochondrial (mtDNA) and nuclear DNA introgression detected in North American populations of the Great Black-backed Gull (Larus marinus), a Holarctic species, from the Nearctic North American Herring Gull (Larus smithsonianus). Our results show that extensive unidirectional mtDNA introgression from Larus smithsonianus into Larus marinus in North America cannot be explained by ancestral polymorphism but most likely results from ancient hybridization events occurring when Larus marinus invaded the North America. Conversely, our nuclear DNA results based on 12 microsatellites detected very little introgression from Larus smithsonianus into North American Larus marinus. We discuss these results in the framework of demographic and selective mechanisms that have been postulated to explain mito-nuclear discrepancies. We were unable to demonstrate selection as the main cause of mito-nuclear introgression discordance but cannot dismiss the possible role of selection in the observed pattern. Among demographic explanations, only drift in small populations and bias in mate choice in an invasive context may explain our results. As it is often difficult to demonstrate that selection may be the main factor driving the introgression of mitochondrial DNA in natural populations, we advocate that evaluating alternative demographic neutral hypotheses may help to indirectly support or reject hypotheses invoking selective processes