20 research outputs found

    A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data

    Get PDF
    MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms’ role in ecology and human health

    Development and Optimization of an UPLC-QTOF-MS/MS Method Based on an In-Source Collision Induced Dissociation Approach for Comprehensive Discrimination of Chlorogenic Acids Isomers from Momordica Plant Species

    No full text
    Chlorogenic acids (CGA) have been profiled in the leaves of Momordica balsamina, Momordica charantia, and Momordica foetida. All three species were found to contain the trans and cis isomers of 4-acyl para-coumaroylquinic acid (pCoQA), caffeoylquinic acid (CQA), and feruloylquinic acid (FQA). To the best of our knowledge, this is the first report of pCoQA and FQA and their cis isomers in these Momordica species. These profiles were obtained by a newly developed UPLC-qTOF-MS method based on the in-source collision induced dissociation (ISCID) method optimized to mimic the MS2 and MS3 fragmentation of an ion trap-based MS. The presence of the cis isomers is believed to be due to high UV exposure of these plants. Furthermore, the absence of the 3-acyl and 5-acyl CGA molecules points to a metabolic mark that is unusual and represents a very interesting biochemical phenotype of these species. Our optimized ISCID method was also shown to be able to distinguish between the geometrical isomers of all three forms of CGA, a phenomenon previously deemed impossible with other common mass spectrometry systems used for CGA analyses

    Providing metabolomics education and training: Pedagogy and considerations.

    No full text
    BACKGROUND: Metabolomics is a highly multidisciplinary and non-standardised research field. Metabolomics researchers must possess and apply extensive cross-disciplinary content knowledge, subjective experience-based judgement, and the associated diverse skill sets. Accordingly, appropriate educational and training initiatives are important in developing this knowledge and skills base in the metabolomics community. For these initiatives to be successful, they must consider both pedagogical best practice and metabolomics-specific contextual challenges. AIM OF REVIEW: The aim of this review is to provide consolidated pedagogical guidance for educators and trainers in metabolomics educational and training programmes. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this review, we discuss the principles of pedagogical best practice as they relate to metabolomics. We then discuss the challenges and considerations in developing and delivering education and training in metabolomics. Finally, we present examples from our own teaching practice to illustrate how pedagogical best practice can be integrated into metabolomics education and training programmes

    Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis

    No full text
    Plant cell suspension culture systems are valuable for the study of complex biological systems such as inducible defence responses and aspects of plant innate immunity. Perturbations to the cellular metabolome can be investigated using metabolomic approaches in order to reveal the underlying metabolic mechanism of cellular responses. Lipopolysaccharides from the sorghum pathogen, Burkholderia andropogonis (LPSB.a.), were purified, chemically characterised and structurally elucidated. The lipid A moiety consists of tetra- and penta-acylated 1,4’-bis-phosphorylated disaccharide backbone decorated by aminoarabinose residues, while the O-polysaccharide chain consists of linear trisaccharide repeating units of [?2)-a-Rha3CMe-(1 ? 3)-a-Rha-(1 ? 3)-a-Rha-(1 ?]. The effect of LPSB.a. in triggering metabolic reprogramming in Sorghum bicolor cells were investigated using untargeted metabolomics with liquid chromatography coupled to mass spectrometry detection. Cells were treated with LPSB.a. and the metabolic changes monitored over a 30 h time period. Alterations in the levels of phytohormones (jasmonates, zeatins, traumatic-, azelaic- and abscisic acid), which marked the onset of defence responses and accumulation of defence-related metabolites, were observed. Phenylpropanoids and indole alkaloids as well as oxylipins that included di- and trihydroxyoctadecedienoic acids were identified as signatory biomarkers, with marked secretion into the extracellular milieu. The study demonstrated that sorghum cells recognise LPSB.a. as a ‘microbe-associated molecular pattern’, perturbing normal cellular homeostasis. The molecular features of the altered metabolome were associated with phytohormone-responsive metabolomic reconfiguration of primary and secondary metabolites originating from various metabolic pathways, in support of defence and immunity
    corecore