604 research outputs found
Dipole Oscillations in Bose - Fermi Mixture in the Time-Dependent Grosspitaevskii and Vlasov equations
We study the dipole collective oscillations in the bose-fermi mixture using a
dynamical time-dependent approach, which are formulated with the time-dependent
Gross-Pitaevskii equation and the Vlasov equation. We find big difference in
behaviors of fermion oscillation between the time-dependent approach and usual
approaches such as the random-phase approximation and the sum-rule approach.
While the bose gas oscillates monotonously, the fermion oscillation shows a
beat and a damping. When the amplitude is not minimal, the dipole oscillation
of the fermi gas cannot be described with a simple center-of-mass motion.Comment: 17 pages text, and 15 figure
Magnetic field-induced one-magnon Raman scattering in the magnon Bose-Einstein condensation phase of TlCuCl
We report the observation of the -symmetric one-magnon Raman peak
in the magnon Bose-Einstein condensation phase of TlCuCl. Its Raman shift
traces the one-magnon energy at the magnetic point, and its intensity
is proportional to the squared transverse magnetization. The appearance of the
one-magnon Raman scattering originates from the exchange magnon Raman process
and reflects the change of the magnetic-state symmetry. Using the bond-operator
representation, we theoretically clarify the Raman selection rules, being
consistent with the experimental results.Comment: 6 pages, 4 figure
Confirmation of a one-dimensional spin-1/2 Heisenberg system with ferromagnetic first-nearest-neighbor and antiferromagnetic second-nearest-neighbor interactions in RbCuMoO
We have investigated magnetic properties of RbCuMoO
powder. Temperature dependence of magnetic susceptibility and magnetic-field
dependence of magnetization have shown that this cuprate is a model compound of
a one-dimensional spin-1/2 Heisenberg system with ferromagnetic
first-nearest-neighbor (1NN) and antiferromagnetic second-nearest-neighbor
(2NN) competing interactions (competing system). Values of the 1NN and 2NN
interactions are estimated as K and K (). This value of suggests that the ground state is a
spin-singlet incommensurate state. In spite of relatively large and
, no magnetic phase transition appears down to 2 K, while an
antiferromagnetic transition occurs in other model compounds of the competing
system with ferromagnetic 1NN interaction. For that reason,
RbCuMoO is an ideal model compound to study properties of
the incommensurate ground state that are unconfirmed experimentally.Comment: 6 pages, 4 figure
Algebraic entropy and the space of initial values for discrete dynamical systems
A method to calculate the algebraic entropy of a mapping which can be lifted
to an isomorphism of a suitable rational surfaces (the space of initial values)
are presented. It is shown that the degree of the th iterate of such a
mapping is given by its action on the Picard group of the space of initial
values. It is also shown that the degree of the th iterate of every
Painlev\'e equation in sakai's list is at most and therefore its
algebraic entropy is zero.Comment: 10 pages, pLatex fil
Distribution of partition function zeros of the model on the Bethe lattice
The distribution of partition function zeros is studied for the model
of spin glasses on the Bethe lattice. We find a relation between the
distribution of complex cavity fields and the density of zeros, which enables
us to obtain the density of zeros for the infinite system size by using the
cavity method. The phase boundaries thus derived from the location of the zeros
are consistent with the results of direct analytical calculations. This is the
first example in which the spin glass transition is related to the distribution
of zeros directly in the thermodynamical limit. We clarify how the spin glass
transition is characterized by the zeros of the partition function. It is also
shown that in the spin glass phase a continuous distribution of singularities
touches the axes of real field and temperature.Comment: 23 pages, 12 figure
Neutrino Emission from Magnetized Proto-Neutron Stars in Relativistic Mean Field Theory
We make a perturbative calculation of neutrino scattering and absorption in
hot and dense hyperonic neutron-star matter in the presence of a strong
magnetic field. We find that the absorption cross-sections show a remarkable
angular dependence in that the neutrino absorption strength is reduced in a
direction parallel to the magnetic field and enhanced in the opposite
direction. This asymmetry in the neutrino absorbtion can be as much as 2.2 % of
the entire neutrino momentum for an interior magnetic field of \sim 2 x 10^{17}
G. We estimate the pulsar kick velocities associated with this asymmetry in a
fully relativistic mean-field theory formulation. We show that the kick
velocities calculated here are comparable to observed pulsar velocities.Comment: arXiv admin note: substantial text overlap with arXiv:1009.097
Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach
Developing self-organised swarm systems capable of adapting to environmental changes as well as to dynamic situations is a complex challenge. An efficient labour division model, with the ability to regulate the distribution of work among swarm robots, is an important element of this kind of system. This paper extends the popular response threshold model and proposes a new adaptive response threshold model (ARTM). Experiments were carried out in simulation and in real-robot scenarios with the aim of studying the performance of this new adaptive model. Results presented in this paper verify that the extended approach improves on the adaptability of previous systems. For example, by reducing collision duration among robots in foraging missions, our approach helps small swarms of robots to adapt more efficiently to changing environments, thus increasing their self-sustainability (survival rate). Finally, we propose a minimal version of ARTM, which is derived from the conclusions drawn through real-robot and simulation results
Recommended from our members
Author Correction: Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
- …