57 research outputs found

    Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules

    Full text link
    Exploiting dependencies between labels is considered to be crucial for multi-label classification. Rules are able to expose label dependencies such as implications, subsumptions or exclusions in a human-comprehensible and interpretable manner. However, the induction of rules with multiple labels in the head is particularly challenging, as the number of label combinations which must be taken into account for each rule grows exponentially with the number of available labels. To overcome this limitation, algorithms for exhaustive rule mining typically use properties such as anti-monotonicity or decomposability in order to prune the search space. In the present paper, we examine whether commonly used multi-label evaluation metrics satisfy these properties and therefore are suited to prune the search space for multi-label heads.Comment: Preprint version. To appear in: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2018. See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3074 for further information. arXiv admin note: text overlap with arXiv:1812.0005

    Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning

    Full text link
    Being able to model correlations between labels is considered crucial in multi-label classification. Rule-based models enable to expose such dependencies, e.g., implications, subsumptions, or exclusions, in an interpretable and human-comprehensible manner. Albeit the number of possible label combinations increases exponentially with the number of available labels, it has been shown that rules with multiple labels in their heads, which are a natural form to model local label dependencies, can be induced efficiently by exploiting certain properties of rule evaluation measures and pruning the label search space accordingly. However, experiments have revealed that multi-label heads are unlikely to be learned by existing methods due to their restrictiveness. To overcome this limitation, we propose a plug-in approach that relaxes the search space pruning used by existing methods in order to introduce a bias towards larger multi-label heads resulting in more expressive rules. We further demonstrate the effectiveness of our approach empirically and show that it does not come with drawbacks in terms of training time or predictive performance.Comment: Preprint version. To appear in Proceedings of the 22nd International Conference on Discovery Science, 201

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    The DREAM Dataset: Supporting a data-driven study of autism spectrum disorder and robot enhanced therapy

    Get PDF
    We present a dataset of behavioral data recorded from 61 children diagnosed with Autism Spectrum Disorder (ASD). The data was collected during a large-scale evaluation of Robot Enhanced Therapy (RET). The dataset covers over 3000 therapy sessions and more than 300 hours of therapy. Half of the children interacted with the social robot NAO supervised by a therapist. The other half, constituting a control group, interacted directly with a therapist. Both groups followed the Applied Behavior Analysis (ABA) protocol. Each session was recorded with three RGB cameras and two RGBD (Kinect) cameras, providing detailed information of children’s behavior during therapy. This public release of the dataset comprises body motion, head position and orientation, and eye gaze variables, all specified as 3D data in a joint frame of reference. In addition, metadata including participant age, gender, and autism diagnosis (ADOS) variables are included. We release this data with the hope of supporting further data-driven studies towards improved therapy methods as well as a better understanding of ASD in general.CC BY 4.0DREAM - Development of robot-enhanced therapy for children with autism spectrum disorders

    Learning Business Rules with Association Rule Classifiers

    No full text

    Data Analytics Tools: A User Perspective

    No full text

    A New Rough Set Based Classification Rule Generation Algorithm(RGA)

    No full text
    corecore