112,308 research outputs found
GRB afterglows: deep Newtonian phase and its application
Gamma-ray burst afterglows have been observed for months or even years in a
few cases. It deserves noting that at such late stages, the remnants should
have entered the deep Newtonian phase, during which the majority of
shock-accelerated electrons will no longer be highly relativistic. To calculate
the afterglows, we must assume that the electrons obey a power-law distribution
according to their kinetic energy, not simply the Lorentz factor.Comment: Poster at the 4th workshop "Gamma-Ray Bursts in the Afterglow Era"
(Rome, 2004), accepted for publication in the proceedings. 4 pages, with 3
figures inserte
A Generic Dynamical Model of Gamma-ray Burst Remnants
The conventional generic model is deemed to explain the dynamics of
-ray burst remnants very well, no matter whether they are adiabatic or
highly radiative. However, we find that for adiabatic expansion, the model
could not reproduce the Sedov solution in the non-relativistic phase, thus the
model needs to be revised. In the present paper, a new differential equation is
derived. The generic model based on this equation has been shown to be correct
for both radiative and adiabatic fireballs, and in both ultra-relativistic and
non-relativistic phase.Comment: 10 pages, LaTeX, 4 postscript figures, accepted for publication in
MNRA
Optical Flashes and Very Early Afterglows in Wind Environments
The interaction of a relativistic fireball with its ambient medium is
described through two shocks: a reverse shock that propagates into the
fireball, and a forward shock that propagates into the medium. The observed
optical flash of GRB 990123 has been considered to be the emission from such a
reverse shock. The observational properties of afterglows suggest that the
progenitors of some GRBs may be massive stars and their surrounding media may
be stellar winds. We here study very early afterglows from the reverse and
forward shocks in winds. An optical flash mainly arises from the relativistic
reverse shock while a radio flare is produced by the forward shock. The peak
flux densities of optical flashes are larger than 1 Jy for typical parameters,
if we do not take into account some appropriate dust obscuration along the line
of sight. The radio flare always has a long lasting constant flux, which will
not be covered up by interstellar scintillation. The non-detections of optical
flashes brighter than about 9th magnitude may constrain the GRBs isotropic
energies to be no more than a few ergs and wind intensities to be
relatively weak.Comment: 21 pages, 6 figures, accepted by MNRAS on March 7, 200
Beaming effects in GRBs and orphan afterglows
The overall dynamical evolution and radiation mechanism of -ray burst
jets are briefly introduced. Various interesting topics concerning beaming in
-ray bursts are discussed, including jet structures, orphan afterglows
and cylindrical jets. The possible connection between -ray bursts and
neutron star kicks is also addressed.Comment: 10 Pages, 4 figures, to appear in a special issue of ApSS. Oral
report presented at "The Multiwavelength Approach to Unidentified Gamma-Ray
Sources" (Hong Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and
G.E. Romero
Transverse momentum dependence in the perturbative calculation of pion form factor
By reanalysing transverse momentum dependence in the perturbative calculation
of pion form factor an improved expression of pion form factor which takes into
account the transverse momentum dependenc in hard scattering amplitude and
intrinsic transverse momentum dependence associated with pion wave functions is
given to leading order, which is available for momentum transfers of the order
of a few GeV as well as for . Our scheme can be extended to
evaluate the contributions to the pion form factor beyond leading order.Comment: 13 pages in LaTeX, plus 3 Postscript figure
- …