12 research outputs found
Heme protein fluorescence versus pressure.
Fluorescence spectra of several ferric heme proteins have been measured vs. pressure to 6,000 bars. Sperm whale myoglobin (SW Mb), Aplysia myoglobin, leghemoglobin (Lb), and cytochrome P450 all show excitation and emission spectra characteristic of tryptophan in proteins with peak emission at 330-340 nm. At one bar, the fluorescence is weak due to energy transfer to the heme group, which makes the yield a sensitive probe of protein unfolding at high pressure. After an initial decrease of a few percent per kbar, the protein shows a large increase in fluorescence at high pressure. The increase is pH dependent and the results indicate that several high pressure states occur. For SW Mb at 15 degrees C an increase of a factor of 20 occurs with midpoint at 2,000 bars at pH 5 and is only partially reversible, while the increase at pH 7 occurs at 4,000 bars and is only half as large and is completely reversible. Aplysia Mb and Lb show a similar effect, but unfold at a higher pressure than SW Mb. P450 also shows a transition to a state of higher fluorescence, but the transition in this case is irreversible as a stable form, P420, is formed. The fluorescence intensity measurements permit an estimation of the increase in the TRY-heme distance in the high pressure state
Role of lipid rafts in agrin-elicited acetylcholine receptor clustering
Emerging concepts of membrane organization point to the compartmentalization of the plasma membrane into distinct lipid microdomains. This lateral segregation within cellular membranes is based on cholesterol-sphingolipid-enriched microdomains or lipid rafts which can move laterally and assemble into large-scale domains to create plasma membrane specialized cellular structures at specific cell locations. Such domains are likely involved in the genesis of the postsynaptic specialization at the neuromuscular junction, which requires the accumulation of acetylcholine receptors (AChRs), through activation of the muscle specific kinase MuSK by the neurotropic factor agrin and the reorganization of the actin cytoskeleton. We used C2C12 myotubes as a model system to investigate whether agrin-elicited AChR clustering correlated with lipid rafts. In a previous study, using two-photon Laurdan confocal imaging, we showed that agrin-induced AChR clusters corresponded to condensed membrane domains: the biophysical hallmark of lipid rafts [F. Stetzkowski-Marden, K. Gaus, M. Recouvreur, A. Cartaud, J. Cartaud, Agrin elicits membrane condensation at sites of acetylcholine receptor clusters in C2C12 myotubes, J. Lipid Res. 47 (2006) 2121-2133]. We further demonstrated that formation and stability of AChR clusters depend on cholesterol. We also reported that three different extraction procedures (Triton X-100, pH 11 or isotonic Ca++, Mg++ buffer) generated detergent resistant membranes (DRMs) with similar cholesterol/GM1 ganglioside content, which are enriched in several signalling postsynaptic components, notably AChR, the agrin receptor MuSK, rapsyn and syntrophin. Upon agrin engagement, actin and actin-nucleation factors such as Arp2/3 and N-WASP were transiently recovered within raft fractions suggesting that the activation by agrin can trigger actin polymerization. Taken together, the present data suggest that AChR clustering at the neuromuscular junction relies upon a mechanism of raft coalescence driven by agrin-elicited actin polymerization