8 research outputs found

    The HIV-1 Integrase α4-Helix Involved in LTR-DNA Recognition Is also a Highly Antigenic Peptide Element

    Get PDF
    Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (

    High security smartcards

    No full text
    New consumer appliances such as PDA, set top box, GSM/UMTS terminals enable an easy access to the Internet and strongly contribute to the development of e-commerce and m-commerce services. Tens of billion payments are made using cards today, and this is expected to grow in a near future. Smartcard platforms will enable operators and service providers to design and deploy new e- and m-commerce services. This development can only be achieved if a high level of security is guaranteed for the transactions and the customer's information. In this context, smartcard design is very challenging in order to provide the flexibility and the powerfulness required by the applications and services, while at the same time guaranteeing the security of the transactions and the customer's privacy. The goal of the session is to introduce this context and highlights the main challenges the smartcard designers/manufacturers have to face

    Hairpins in a DNA site for topoisomerase II studied by 1H- and 31P-NMR.

    No full text
    1H- and 31P-NMR and UV-absorption studies were carried out with the oligonucleotide strands d(AGCT-TATC-ATC-GATAAGCT) (-ATC-) and d(AGCTTATC-GAT-GATAAGCT) (-GAT-) contained in the strongest and salt resistant cleavage site for topoisomerase II in pBR322 DNA. We found that the two oligonucleotides were stabilized under a hairpin structure characterized by a eight base pair stem and a three base loop at low DNA and salt concentrations. In such experimental conditions, only the -GAT- oligonucleotide displayed a partial homoduplex structure in slow equilibrium with its folded structure. Temperature dependencies of imino protons showed that the partial homoduplex of -GAT- melted at a lower temperature than the hairpin structure. It was suggested that the appearance of the partial homoduplex in -GAT- is related to the formation of two stabilizing (G.T) mismatched base pairs in the central loop of this structure. Finally, it was inferred from the dispersion of chemical shifts in the 31P-NMR spectra that the distortions affecting the backbone of the hairpin loop are larger in the case of -ATC- compared with -GAT-. At the same time NOEs proved that the base stacking was stronger within the loop of the -ATC- hairpin
    corecore