845 research outputs found

    A Case of Trisomy D1 — Syndrome of Patau

    Get PDF
    ABSTRACTA case of D1 trisomy is reported. The patient suffered of multiple congenital anomalies, which formed a characteristic pattern known as the « Patau's syndrome ».Chromosome analysis from blood cultures showed a modal number of 47; the additional chromosome was a 13 (D1).The aneuploidy origin and the probable mechanism, through which the malformations typical of Patau's syndrome might be produced, are discussed

    Is there a left-handed magnetic field in the solar neighborhood?:Exploring helical magnetic fields in the interstellar medium through dust polarization power spectra

    Get PDF
    The full-sky Planck polarization data at 850um revealed unexpected properties of the E and B mode power spectra of dust emission in the interstellar medium (ISM). The positive cross-correlation between the total dust intensity, T, with the B modes has raised new questions about the physical mechanisms that affect dust polarization, such as the Galactic magnetic-field structure. This is key both to better understanding ISM dynamics and to accurately describing Galactic foregrounds to the polarization of the Cosmic Microwave Background (CMB). In this theoretical paper we investigate the possibility that the observed cross-correlations in the dust polarization power spectra, and specifically between T and B, can be related to a parity-odd quantity in the ISM such as the magnetic helicity. We produce synthetic dust polarization data, derived from 3D analytical toy models of density structures and helical magnetic fields, to compare with the E and B modes of observations. Focusing on the observed T-B correlation, we propose a new line of interpretation of the Planck observations based on a large-scale helical component of the Galactic magnetic field in the solar neighborhood. Our analysis shows that: I) the sign of magnetic helicity does not affect E and B modes for isotropic magnetic-field configurations; II) helical magnetic fields threading interstellar filaments cannot reproduce the Planck results; III) a weak helical left-handed magnetic field structure in the solar neighborhood may explain the T-B correlation seen in the Planck data. This work suggests a new perspective for the interpretation of the dust polarization power spectra, which strongly supports the imprint of a large-scale structure of the Galactic magnetic field in the solar neighborhood.Comment: Accepted by Astronomy & Astrophysics on November 24, 201

    Vorticity production and survival in viscous and magnetized cosmologies

    Full text link
    We study the role of viscosity and the effects of a magnetic field on a rotating, self-gravitating fluid, using Newtonian theory and adopting the ideal magnetohydrodynamic approximation. Our results confirm that viscosity can generate vorticity in inhomogeneous environments, while the magnetic tension can produce vorticity even in the absence of fluid pressure and density gradients. Linearizing our equations around an Einstein-de Sitter cosmology, we find that viscosity adds to the diluting effect of the universal expansion. Typically, however, the dissipative viscous effects are confined to relatively small scales. We also identify the characteristic length bellow which the viscous dissipation is strong and beyond which viscosity is essentially negligible. In contrast, magnetism seems to favor cosmic rotation. The magnetic presence is found to slow down the standard decay-rate of linear vortices, thus leading to universes with more residual rotation than generally anticipated.Comment: Minor changes. References added and updated. Published versio

    Global simulations of Tayler instability in stellar interiors: a long-time multi-stage evolution of the magnetic field

    Full text link
    Magnetic fields have been observed in massive Ap/Bp stars and presumably are also present in the radiative zone of solar-like stars. Yet, to date there is no clear understanding of the dynamics of the magnetic field in stably stratified layers. A purely toroidal magnetic field configuration is known to be unstable, developing mainly non-axisymmetric modes. Rotation and a small poloidal field component may lead to a stable configuration. Here we perform global MHD simulations with the EULAG-MHD code to explore the evolution of a toroidal magnetic field located in a layer whose stratification resembles the solar tachocline. Our numerical experiments allow us to explore the initial unstable phase as well as the long-term evolution of the magnetic field. During the first Alfven cycles, we observe the development of the Tayler instability with the prominent longitudinal wavenumber, m=1m=1. Rotation decreases the growth rate of the instability, and eventually suppresses it. However, after a stable phase, sudden energy surges lead to the development of higher order modes even for fast rotation. These modes extract energy from the initial toroidal field. Nevertheless, our results show that sufficiently fast rotation leads to a lower saturation energy of the unstable modes, resulting in a magnetic topology with only a small fraction of poloidal field which remains steady for several hundreds of Alfven travel times. At this stage, the system becomes turbulent and the field is prone to turbulent diffusion. The final toroidal-poloidal configuration of the magnetic field may represent an important aspect of the field generation and evolution in stably-stratified layers.Comment: 15 pages, 16 figures, submitted to MNRA

    ASCA and BeppoSAX observations of the peculiar X-ray source 4U1700+24/HD154791

    Get PDF
    The X-ray source 4U1700+24/HD154791 is one of the few galactic sources whose counterpart is an evolved M star. In X-rays the source shows extreme erratic variability and a complex and variable spectrum. While this strongly suggests accretion onto a compact object, no clear diagnosis of binarity was done up to now. We report on ASCA and BeppoSAX X-ray broad band observations of this source and on ground optical observations from the Loiano 1.5 m telescope.Comment: 5 pages, 4 figures, uses aipproc.sty, to appear in Proceedings of the Fifth Compton Symposiu

    Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows

    Full text link
    Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the P\`eclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to non-local and non-instantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.Comment: 13 pages, 10 figures, published on PR

    Guiding criteria for instrument design at long-pulse neutron sources

    Get PDF
    6 págs.; 3 figs.; 7th Meeting of the Spanish Neutron Scattering Association (SETN); Open Access funded by Creative Commons Atribution Licence 3.0We introduce and describe general criteria which characterize long-pulse neutron sources, with a view to guiding and facilitating subsequent instrument design and optimization for specific applications. The ensuing analysis shows that a long-pulse neutron source allows for the possibility of a wide range of flexible instrument concepts with variable resolution and dynamic range, tasks which invariably require the implementation of pulse-modulation techniques in the time domain, particularly for high-resolution applications. We also consider in some detail yet-to-be-tapped opportunities in the use of shorter proton pulses, characterised by a duration commensurate with typical moderation times at spallation sources.This work would not have been possible without the support of the computing infrastructure of the i2BASQUE Academic Network and the support of the ESS-DMSC Computing Centre.Peer Reviewe
    corecore