593 research outputs found
A theoretical and semiemprical correction to the long-range dispersion power law of stretched graphite
In recent years intercalated and pillared graphitic systems have come under
increasing scrutiny because of their potential for modern energy technologies.
While traditional \emph{ab initio} methods such as the LDA give accurate
geometries for graphite they are poorer at predicting physicial properties such
as cohesive energies and elastic constants perpendicular to the layers because
of the strong dependence on long-range dispersion forces. `Stretching' the
layers via pillars or intercalation further highlights these weaknesses. We use
the ideas developed by [J. F. Dobson et al, Phys. Rev. Lett. {\bf 96}, 073201
(2006)] as a starting point to show that the asymptotic dependence
of the cohesive energy on layer spacing in bigraphene is universal to all
graphitic systems with evenly spaced layers. At spacings appropriate to
intercalates, this differs from and begins to dominate the power
law for dispersion that has been widely used previously. The corrected power
law (and a calculated coefficient) is then unsuccesfully employed in the
semiempirical approach of [M. Hasegawa and K. Nishidate, Phys. Rev. B {\bf 70},
205431 (2004)] (HN). A modified, physicially motivated semiempirical method
including some effects allows the HN method to be used
successfully and gives an absolute increase of about to the predicted
cohesive energy, while still maintaining the correct asymptotics
Artificial diet sandwich reveals subsocial behavior in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae)
An artificial diet sandwich, consisting of coffee berry borer artificial diet within two glass plates, has been developed to elucidate the behaviour of the coffee berry borer, an insect that in nature spends most of its life cycle inside the coffee berry. Various types of behaviour have been observed for the first time, including gallery construction, oviposition, gallery blocking, mating and most remarkably, subsocial tasks such as maternal sanitation and tending of eggs and larvae. This observational technique is a breakthrough for studies and manipulations of the coffee berry borer's social behaviour and could be applicable to other bark beetles, consequently yielding important insights into the origin of parental care in scolytine beetles
Theory for Nonlinear Spectroscopy of Vibrational Polaritons
Molecular polaritons have gained considerable attention due to their
potential to control nanoscale molecular processes by harnessing
electromagnetic coherence. Although recent experiments with liquid-phase
vibrational polaritons have shown great promise for exploiting these effects,
significant challenges remain in interpreting their spectroscopic signatures.
In this letter, we develop a quantum-mechanical theory of pump-probe
spectroscopy for this class of polaritons based on the quantum Langevin
equations and the input-output theory. Comparison with recent experimental data
shows good agreement upon consideration of the various vibrational
anharmonicities that modulate the signals. Finally, a simple and intuitive
interpretation of the data based on an effective mode-coupling theory is
provided. Our work provides a solid theoretical framework to elucidate
nonlinear optical properties of molecular polaritons as well as to analyze
further multidimensional spectroscopy experiments on these systems
Magnetic flux flow and superconductor stabilization Quarterly report, 1 Jan. - 31 Mar. 1968
Magnetic flux flow and stability of superconducting niobium titanium strip
A novel mechanism of non- feminizing estrogens in neuroprotection
Estrogens are potent and efficacious neuroprotectants both in vitro and in vivo in a variety of models of neurotoxicity. We determined the structural requirements for neuroprotection in an in vitro assay using a panel of more than 70 novel estratrienes, synthesized to reduce or eliminate estrogen receptor (ER) binding. We observed that neuroprotection could be enhanced by as much as 200-fold through modifications that positioned a large bulky group at the C2 or C4 position of the phenolic A ring of the estratriene. Further, substitutions on the B, C or D rings either reduced or did not markedly change neuroprotection. Collectively, there was a negative correlation between binding to ERs and neuroprotection with the more potent compounds showing no ER binding. In an in vivo model for neuroprotection, transient cerebral ischemia, efficacious compounds were active in protection of brain tissue from this pro-oxidant insult. We demonstrated that these non-feminizing estrogens engage in a redox cycle with glutathione, using the hexose monophosphate shunt to apply cytosolic reducing potential to cellular membranes. Together, these results demonstrate that non-feminizing estrogens are neuroprotective and protect brain from the induction of ischemic- and Alzheimer’s disease (AD)-like neuropathology in an animal model. These features of non-feminizing estrogens make them attractive compounds for assessment of efficacy in AD and stroke, as they are not expected to show the side effects of chronic estrogen therapy that are mediated by ER actions in the liver, uterus and breast
Revealing Hidden Vibration Polariton Interactions by 2D IR Spectroscopy
We report the first experimental two-dimensional infrared (2D IR) spectra of
novel molecular photonic excitations - vibrational-polaritons. The application
of advanced 2D IR spectroscopy onto novel vibrational-polariton challenges and
advances our understanding in both fields. From spectroscopy aspect, 2D IR
spectra of polaritons differ drastically from free uncoupled molecules; from
vibrational-polariton aspects, 2D IR uniquely resolves hybrid light-matter
polariton excitations and unexpected dark states in a state-selective manner
and revealed hidden interactions between them. Moreover, 2D IR signals
highlight the role of vibrational anharmonicities in generating non-linear
signals. To further advance our knowledge on 2D IR of vibrational polaritons,
we develop a new quantum-mechanical model incorporating the effects of both
nuclear and electrical anharmonicities on vibrational-polaritons and their 2D
IR signals. This work reveals polariton physics that is difficult or impossible
to probe with traditional linear spectroscopy and lays the foundation for
investigating new non-linear optics and chemistry of molecular
vibrational-polaritons
A Tale of Three Watersheds: Nonpoint Source Pollution and Conservation Practices across Iowa
Resource /Energy Economics and Policy, Q25,
Recommended from our members
Encouraging girls in math and science
The objective of this guide is to provide teachers with specific recommendations that can be carried out in the classroom without requiring systemic change. Other school personnel having direct contact with students, such as coaches, counselors, and principals, will also find the guide useful
Weddell Sea Export Pathways from Surface Drifters
The complex export pathways that connect the surface waters of the Weddell Sea with the Antarctic Circumpolar Current influence water mass modification, nutrient fluxes, and ecosystem dynamics. To study this exchange, 40 surface drifters, equipped with temperature sensors, were released into the northwestern Weddell Sea’s continental shelf and slope frontal system in late January 2012. Comparison of the drifter trajectories with a similar deployment in early February 2007 provides insight into the interannual variability of the surface circulation in this region. Observed differences in the 2007 and 2012 drifter trajectories are related to a variable surface circulation responding to changes in wind stress curl over the Weddell Gyre. Differences between northwestern Weddell Sea properties in 2007 and 2012 include 1) an enhanced cyclonic wind stress forcing over the Weddell Gyre in 2012; 2) an acceleration of the Antarctic Slope Current (ASC) and an offshore shift of the primary drifter export pathway in 2012; and 3) a strengthening of the Coastal Current (CC) over the continental shelf in 2007. The relationship between wind stress forcing and surface circulation is reproduced over a longer time period in virtual drifter deployments advected by a remotely sensed surface velocity product. The mean offshore position and speed of the drifter trajectories are correlated with the wind stress curl over the Weddell Gyre, although with different temporal lags. The drifter observations are consistent with recent modeling studies suggesting that Weddell Sea boundary current variability can significantly impact the rate and source of exported surface waters to the Scotia Sea, a process that determines regional chlorophyll distributions
Induction of \u3cem\u3eIL19\u3c/em\u3e Expression through JNK and cGAS-STING Modulates DNA Damage–Induced Cytokine Production
Cytokine production is a critical component of cell-extrinsic responses to DNA damage and cellular senescence. Here, we demonstrated that expression of the gene encoding interleukin-19 (IL-19) was enhanced by DNA damage through pathways mediated by c-Jun amino-terminal kinase (JNK) and cGAS-STING and that IL19 expression was required for the subsequent production of the cytokines IL-1, IL-6, and IL-8. IL19 expression was stimulated by diverse cellular stresses, including inhibition of the DNA replication checkpoint kinase ATR (ataxia telangiectasia and Rad3-related protein), oncogene expression, replicative exhaustion, oxidative stress, and DNA double-strand breaks. Unlike the production of IL-6 and IL-8, IL19 expression was not affected by abrogation of signaling by the IL-1 receptor (IL-1R) or the mitogen-activated protein kinase p38. Instead, the DNA damage–induced production of IL-1, IL-6, and IL-8 was substantially reduced by suppression of IL19 expression. The signaling pathways required to stimulate IL19 expression selectively depended on the type of DNA-damaging agent. Reactive oxygen species and the ASK1-JNK pathway were critical for responses to ionizing radiation (IR), whereas the cGAS-STING pathway stimulated IL19 expression in response to either IR or ATR inhibition. Whereas induction of IL1, IL6, and IL8 by IR depended on IL19 expression, the cGAS-STING–dependent induction of the immune checkpoint gene PDL1 after IR and ATR inhibition was independent of IL19. Together, these results suggest that IL-19 production by diverse pathways forms a distinct cytokine regulatory arm of the response to DNA damage
- …