5,779 research outputs found
Newtonian Kinetic Theory and the Ergodic-Nonergodic Transition
In a recent work we have discussed how kinetic theory, the statistics of
classical particles obeying Newtonian dynamics, can be formulated as a field
theory. The field theory can be organized to produce a self-consistent
perturbation theory expansion in an effective interaction potential. In the
present work we use this development for investigating ergodic-nonergodic (ENE)
transitions in dense fluids. The theory is developed in terms of a core problem
spanned by the variables , the number density, and , a response
density. We set up the perturbation theory expansion for studying the
self-consistent model which gives rise to a ENE transition. Our main result is
that the low-frequency dynamics near the ENE transition is the same for
Smoluchowski and Newtonian dynamics. This is true despite the fact that term by
term in a density expansion the results for the two dynamics are fundamentally
different.Comment: 48 pages, 3 figure
Field Theoretic Formulation of Kinetic theory: I. Basic Development
We show how kinetic theory, the statistics of classical particles obeying
Newtonian dynamics, can be formulated as a field theory. The field theory can
be organized to produce a self-consistent perturbation theory expansion in an
effective interaction potential. The need for a self-consistent approach is
suggested by our interest in investigating ergodic-nonergodic transitions in
dense fluids. The formal structure we develop has been implemented in detail
for the simpler case of Smoluchowski dynamics. One aspect of the approach is
the identification of a core problem spanned by the variables \rho the number
density and B a response density. In this paper we set up the perturbation
theory expansion with explicit development at zeroth and first order. We also
determine all of the cumulants in the noninteracting limit among the core
variables \rho and B.Comment: 45 page
Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays
Supermassive black hole -- host galaxy relations are key to the computation
of the expected gravitational wave background (GWB) in the pulsar timing array
(PTA) frequency band. It has been recently pointed out that standard relations
adopted in GWB computations are in fact biased-high. We show that when this
selection bias is taken into account, the expected GWB in the PTA band is a
factor of about three smaller than previously estimated. Compared to other
scaling relations recently published in the literature, the median amplitude of
the signal at yr drops from to
. Although this solves any potential tension between
theoretical predictions and recent PTA limits without invoking other dynamical
effects (such as stalling, eccentricity or strong coupling with the galactic
environment), it also makes the GWB detection more challenging.Comment: 6 pages 4 figures, submitted to MNRAS letter
A Statistical Semi-Empirical Model: Satellite galaxies in Groups and Clusters
We present STEEL a STatistical sEmi-Empirical modeL designed to probe the
distribution of satellite galaxies in groups and clusters. Our fast statistical
methodology relies on tracing the abundances of central and satellite haloes
via their mass functions at all cosmic epochs with virtually no limitation on
cosmic volume and mass resolution. From mean halo accretion histories and
subhalo mass functions the satellite mass function is progressively built in
time via abundance matching techniques constrained by number densities of
centrals in the local Universe. By enforcing dynamical merging timescales as
predicted by high-resolution N-body simulations, we obtain satellite
distributions as a function of stellar mass and halo mass consistent with
current data. We show that stellar stripping, star formation, and quenching
play all a secondary role in setting the number densities of massive satellites
above . We further show that observed
star formation rates used in our empirical model over predict low-mass
satellites below , whereas, star
formation rates derived from a continuity equation approach yield the correct
abundances similar to previous results for centrals.Comment: 21 pages, 17 Figures. MNRAS, in pres
Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation
I show that the hamiltonian theory of Composite Fermions (CF) is capable of
yielding a unified description in fair agreement with recent experiments on
polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu =
p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I
show how rotational invariance and two dimensionality can make the underlying
interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure
Galaxy size trends as a consequence of cosmology
We show that recently documented trends in galaxy sizes with mass and
redshift can be understood in terms of the influence of underlying cosmic
evolution; a holistic view which is complimentary to interpretations involving
the accumulation of discreet evolutionary processes acting on individual
objects. Using standard cosmology theory, supported with results from the
Millennium simulations, we derive expected size trends for collapsed cosmic
structures, emphasising the important distinction between these trends and the
assembly paths of individual regions. We then argue that the observed variation
in the stellar mass content of these structures can be understood to first
order in terms of natural limitations of cooling and feedback. But whilst these
relative masses vary by orders of magnitude, galaxy and host radii have been
found to correlate linearly. We explain how these two aspects will lead to
galaxy sizes that closely follow observed trends and their evolution, comparing
directly with the COSMOS and SDSS surveys. Thus we conclude that the observed
minimum radius for galaxies, the evolving trend in size as a function of mass
for intermediate systems, and the observed increase in the sizes of massive
galaxies, may all be considered an emergent consequence of the cosmic
expansion.Comment: 14 pages, 13 figures. Accepted by MNRA
Super-massive Black Hole Demography: the Match between the Local and Accreted Mass Functions
We have performed a detailed analysis of the local super-massive black-hole
(SMBH) mass function based on both kinematic and photometric data and derived
an accurate analytical fit in the range 10^6 <= (M_BH/M_sun) <= 5*10^9. We find
a total SMBH mass density of (4.2+/-1.1)*10^5 M_sun/Mpc^3, about 25% of which
is contributed by SMBHs residing in bulges of late type galaxies. Exploiting
up-to-date luminosity functions of hard X-ray and optically selected AGNs, we
have studied the accretion history of the SMBH population. If most of the
accretion happens at constant \dot{M_BH}/M_BH the local SMBH mass function is
fully accounted for by mass accreted by X-ray selected AGNs, with bolometric
corrections indicated by current observations and a standard mass-to-light
conversion efficiency \epsilon ~10%. The analysis of the accretion history
highlights that the most massive BHs accreted their mass faster and at higher
redshifts (z>1.5), while the lower mass BHs responsible for most of the hard
X-ray background have mostly grown at z<1.5. The accreted mass function matches
the local SMBH mass function if \epsilon ~0.09(+0.04,-0.03) and the Eddington
ratio \lambda=L/L_Edd \~0.3(+0.3,-0.1) (68% confidence errors). The visibility
time, during which AGNs are luminous enough to be detected by the currently
available X-ray surveys, ranges from ~0.1 Gyr for present day BH masses
M_BH(z=0) ~10^6 M_sun to ~0.3 Gyr for M_BH(z=0) >= 10^9 M_sun. The mass
accreted during luminous phases is >= 25-30% even if we assume extreme values
of \epsilon (\epsilon \~0.3-0.4). An unlikely fine tuning of the parameters
would be required to account for the local SMBH mass function accomodating a
dominant contribution from 'dark' BH growth (due, e.g., to BH coalescence).Comment: 12 pages, 14 figures, accepted for publication in MNRAS, minor
changes following referee's comment
- …