52 research outputs found
Periodic spin textures in a degenerate F=1 Rb spinor Bose gas
We report on the spin textures produced by cooling unmagnetized Rb F=1
spinor gases into the regime of quantum degeneracy. At low temperatures,
magnetized textures form that break translational symmetry and display
short-range periodic magnetic order characterized by one- or two-dimensional
spatial modulations with wavelengths much smaller than the extent of the
quasi-two-dimensional degenerate gas. Spin textures produced upon cooling spin
mixtures with a non-zero initial magnetic quadrupole moment also show
ferromagnetic order that, at low temperature, coexists with the spatially
modulated structure.Comment: 6 pages, revised substantially following reviewer comments and
further analysi
Coherent molecule formation in anharmonic potentials near confinement-induced resonances
We perform a theoretical and experimental study of a system of two ultracold
atoms with tunable interaction in an elongated trapping potential. We show that
the coupling of center-of-mass and relative motion due to an anharmonicity of
the trapping potential leads to a coherent coupling of a state of an unbound
atom pair and a molecule with a center of mass excitation. By performing the
experiment with exactly two particles we exclude three-body losses and can
therefore directly observe coherent molecule formation. We find quantitative
agreement between our theory of inelastic confinement-induced resonances and
the experimental results. This shows that the effects of center-of-mass to
relative motion coupling can have a significant impact on the physics of
quasi-1D quantum systems.Comment: 7 pages, 4 figure
Fermionization of two distinguishable fermions
In this work we study a system of two distinguishable fermions in a 1D
harmonic potential. This system has the exceptional property that there is an
analytic solution for arbitrary values of the interparticle interaction. We
tune the interaction strength via a magnetic offset field and compare the
measured properties of the system to the theoretical prediction. At the point
where the interaction strength diverges, the energy and square of the wave
function for two distinguishable particles are the same as for a system of two
identical fermions. This is referred to as fermionization. We have observed
this phenomenon by directly comparing two distinguishable fermions with
diverging interaction strength with two identical fermions in the same
potential. We observe good agreement between experiment and theory. By adding
one or more particles our system can be used as a quantum simulator for more
complex few-body systems where no theoretical solution is available
Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension
For a system with interacting quantum mechanical particles in a
one-dimensional harmonic oscillator, a trial wavefunction with simple structure
based on the solution of the corresponding two-particle system is suggested and
tested numerically. With the inclusion of a scaling parameter for the distance
between particles, at least for the very small systems tested here the ansatz
gives a very good estimate of the ground state energy, with the error being of
the order of ~1% of the gap to the first excited state
Atom-Dimer Scattering in a Three-Component Fermi Gas
Ultracold gases of three distinguishable particles with large scattering
lengths are expected to show rich few-body physics related to the Efimov
effect. We have created three different mixtures of ultracold 6Li atoms and
weakly bound 6Li2 dimers consisting of atoms in three different hyperfine
states and studied their inelastic decay via atom-dimer collisions. We have
found resonant enhancement of the decay due to the crossing of Efimov-like
trimer states with the atom-dimer continuum in one mixture as well as minima of
the decay in another mixture, which we interpret as a suppression of exchange
reactions of the type |12>+|3> -> |23>+|1>. Such a suppression is caused by
interference between different decay paths and demonstrates the possiblity to
use Efimov physics to control the rate constants for molecular exchange
reactions in the ultracold regime.Comment: 5 pages, 3 figure
A Universal Trimer in a Three-Component Fermi Gas
We show that the recently measured magnetic field dependence of three-body
loss in a three-component mixture of ultracold Li atoms [1,2] can be
explained by the presence of a universal trimer state. Previous work suggested
a universal trimer state as a probable explanation, yet failed to get good
agreement between theory and experiment over the whole range of magnetic
fields. For our description we adapt the theory of Braaten and Hammer [3] for
three identical bosons to the case of three distinguishable fermions by
combining the three scattering lengths and between
the three components to an effective interaction parameter . We show that
taking into account a magnetic field variation of the lifetime of the trimer
state is essential to obtain a complete understanding of the observed decay
rates.Comment: 5 pages, 3 figure
Density profiles and density oscillations of an interacting three-component normal Fermi gas
We use a semiclassical approximation to investigate density variations and
dipole oscillations of an interacting three-component normal Fermi gas in a
harmonic trap. We consider both attractive and repulsive interactions between
different pairs of fermions and study the effect of population imbalance on
densities. We find that the density profiles significantly deviate from those
of non-interacting profiles and extremely sensitive to interactions and
population imbalance. Unlike for a two-component Fermi system, we find density
imbalance even for balanced populations. For some range of parameters, one
component completely repels from the trap center giving rise a donut shape
density profile. Further, we find that the in-phase dipole oscillation
frequency is consistent with Kohn's theorem and other two dipole mode
frequencies are strongly effected by the interactions and the number of atoms
in the harmonic trap.Comment: Total seven pages with five figures. Published versio
Deterministic Preparation of a Tunable Few-Fermion System
Systems consisting of few interacting fermions are the building blocks of
matter with atoms and nuclei being the most prominent examples. We have created
an artificial few-body quantum system with complete control over the system's
quantum state using ultracold fermionic atoms in an optical dipole trap. We
deterministically prepare ground state systems consisting of one to ten
particles with fidelities of ~ 90%. We can tune the inter-particle interactions
to arbitrary values using a Feshbach resonance and have observed the
interaction-induced energy shift for a pair of repulsively interacting atoms.
With this work, quantum simulation of strongly correlated fewbody systems has
become possible. In addition, these microscopic quantum systems can be used as
building blocks for scalable quantum information processing.Comment: 8 pages, 6 figure
Thermometry with spin-dependent lattices
We propose a method for measuring the temperature of strongly correlated
phases of ultracold atom gases confined in spin-dependent optical lattices. In
this technique, a small number of "impurity" atoms--trapped in a state that
does not experience the lattice potential--are in thermal contact with atoms
bound to the lattice. The impurity serves as a thermometer for the system
because its temperature can be straightforwardly measured using time-of-flight
expansion velocity. This technique may be useful for resolving many open
questions regarding thermalization in these isolated systems. We discuss the
theory behind this method and demonstrate proof-of-principle experiments,
including the first realization of a 3D spin-dependent lattice in the strongly
correlated regime.Comment: 22 pages, 8 figures v2: Several references added; Section on heating
rates updated to include dipole fluctuation terms; Section added on the
limitations of the proposed method. To appear in New Journal of Physic
Together is better: mRNA co-encapsulation in lipoplexes is required to obtain ratiometric co-delivery and protein expression on the single cell level
Liposomes can efficiently deliver messenger RNA (mRNA) into cells. When mRNA cocktails encoding different proteins are needed, a considerable challenge is to efficiently deliver all mRNAs into the cytosol of each individual cell. In this work, two methods are explored to co-deliver varying ratiometric doses of mRNA encoding red (R) or green (G) fluorescent proteins and it is found that packaging mRNAs into the same lipoplexes (mingle-lipoplexes) is crucial to efficiently deliver multiple mRNA types into the cytosol of individual cells according to the pre-defined ratio. A mixture of lipoplexes containing only one mRNA type (single-lipoplexes), however, seem to follow the "first come - first serve" principle, resulting in a large variation of R/G uptake and expression levels for individual cells leading to ratiometric dosing only on the population level, but rarely on the single-cell level. These experimental observations are quantitatively explained by a theoretical framework based on the stochasticity of mRNA uptake in cells and endosomal escape of mingle- and single-lipoplexes, respectively. Furthermore, the findings are confirmed in 3D retinal organoids and zebrafish embryos, where mingle-lipoplexes outperformed single-lipoplexes to reliably bring both mRNA types into single cells. This benefits applications that require a strict control of protein expression in individual cells.Drug Delivery Technolog
- …