20 research outputs found

    Conserved sequence motifs upstream from the co-ordinately expressed vitellogenin and apoVLDLII genes of chicken.

    No full text
    The vitellogenin and apoVLDLII yolk protein genes of chicken are transcribed in the liver upon estrogenization. To get information on putative regulatory elements, we compared more than 2 kb of their 5' flanking DNA sequences. Common sequence motifs were found in regions exhibiting estrogen-induced changes in chromatin structure. Stretches of alternating pyrimidines and purines of about 30-nucleotides long are present at roughly similar positions. A distinct box of sequence homology in the chicken genes also appears to be present at a similar position in front of the vitellogenin genes of Xenopus laevis, but is absent from the estrogen-responsive egg-white protein genes expressed in the oviduct. In front of the vitellogenin (position -595) and the VLDLII gene (position -548), a DNA element of about 300 base-pairs was found, which possesses structural characteristics of a mobile genetic element and bears homology to the transposon-like Vi element of Xenopus laevis

    Factors affecting the sensitivity and detection limits of MRI, CT, and SPECT for multimodal diagnostic and therapeutic agents

    No full text
    Noninvasive imaging techniques like magnetic resonance imaging (MRI), computed tomography (CT) and single photon emission computed tomography (SPECT) play an increasingly important role in the diagnostic workup and treatment of cancerous disease. In this context, a distinct trend can be observed towards the development of contrast agents and radiopharmaceuticals that open up perspectives on a multimodality imaging approach, involving all three aforementioned techniques. To promote insight into the potentialities of such an approach, we prepared an overview of the strengths and limitations of the various imaging techniques, in particular with regard to their capability to quantify the spatial distribution of a multimodal diagnostic agent. To accomplish this task, we used a two-step approach. In the first step, we examined the situation for a particular therapeutic anti-cancer agent with multimodal imaging opportunities, viz. holmium-loaded microspheres (HoMS). Physical phantom experiments were performed to enable a comparative evaluation of the three modalities assuming the use of standard equipment, standard clinical scan protocols, and signal-known-exactly conditions. These phantom data were then analyzed so as to obtain first order estimates of the sensitivity and detection limits of MRI, CT and SPECT for HoMS. In the second step, the results for HoMS were taken as a starting point for a discussion of the factors affecting the sensitivity and detection limits of MRI, CT and SPECT for multimodal agents in general. In this, emphasis was put on the factors that must be taken into account when extrapolating the findings for HoMS to other diagnostic tasks, other contrast agents, other experimental conditions, and other scan protocol

    Anytime classification by ontology approximation

    No full text
    Reasoning with large or complex ontologies is one of the bottle-necks of the Semantic Web. In this paper we present an anytime algorithm for classification based on approximate subsumption. We give the formal definitions for approximate subsumption, and show its monotonicity and soundness; we show how it can be computed in terms of classical subsumption; and we study the computational behaviour of the algorithm on a set of realistic benchmarks. The most interesting finding is that anytime classification works best on ontologies where classical subsumption is hardest to compute
    corecore