114 research outputs found

    Steiner t-designs for large t

    Full text link
    One of the most central and long-standing open questions in combinatorial design theory concerns the existence of Steiner t-designs for large values of t. Although in his classical 1987 paper, L. Teirlinck has shown that non-trivial t-designs exist for all values of t, no non-trivial Steiner t-design with t > 5 has been constructed until now. Understandingly, the case t = 6 has received considerable attention. There has been recent progress concerning the existence of highly symmetric Steiner 6-designs: It is shown in [M. Huber, J. Algebr. Comb. 26 (2007), pp. 453-476] that no non-trivial flag-transitive Steiner 6-design can exist. In this paper, we announce that essentially also no block-transitive Steiner 6-design can exist.Comment: 9 pages; to appear in: Mathematical Methods in Computer Science 2008, ed. by J.Calmet, W.Geiselmann, J.Mueller-Quade, Springer Lecture Notes in Computer Scienc

    A Census Of Highly Symmetric Combinatorial Designs

    Full text link
    As a consequence of the classification of the finite simple groups, it has been possible in recent years to characterize Steiner t-designs, that is t-(v,k,1) designs, mainly for t = 2, admitting groups of automorphisms with sufficiently strong symmetry properties. However, despite the finite simple group classification, for Steiner t-designs with t > 2 most of these characterizations have remained longstanding challenging problems. Especially, the determination of all flag-transitive Steiner t-designs with 2 < t < 7 is of particular interest and has been open for about 40 years (cf. [11, p. 147] and [12, p. 273], but presumably dating back to 1965). The present paper continues the author's work [20, 21, 22] of classifying all flag-transitive Steiner 3-designs and 4-designs. We give a complete classification of all flag-transitive Steiner 5-designs and prove furthermore that there are no non-trivial flag-transitive Steiner 6-designs. Both results rely on the classification of the finite 3-homogeneous permutation groups. Moreover, we survey some of the most general results on highly symmetric Steiner t-designs.Comment: 26 pages; to appear in: "Journal of Algebraic Combinatorics

    Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Get PDF
    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures

    Notes on random chords in convex bodies

    No full text
    corecore