11,127 research outputs found
Aboard the Space Shuttle
Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted
Phase Space Tomography of Classical and Nonclassical Vibrational States of Atoms in an Optical Lattice
Atoms trapped in optical lattice have long been a system of interest in the
AMO community, and in recent years much study has been devoted to both short-
and long-range coherence in this system, as well as to its possible
applications to quantum information processing. Here we demonstrate for the
first time complete determination of the quantum phase space distributions for
an ensemble of atoms in such a lattice, including a negative Wigner
function for atoms in an inverted state.Comment: Submitted to Journal of Optics B: Quantum and Semiclassical Optics.
Special issue in connection with the 9th International Conference on Squeezed
States and Uncertainty Relations, to be held in Besancon, France, on 2-6 May
200
Diagnostics and control of wavenumber stability and purity of tunable diode lasers relevant to their use as local oscillators in heterodyne systems
Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability
Observation of high-order quantum resonances in the kicked rotor
Quantum resonances in the kicked rotor are characterized by a dramatically
increased energy absorption rate, in stark contrast to the momentum
localization generally observed. These resonances occur when the scaled
Planck's constant hbar=(r/s)*4pi, for any integers r and s. However only the
hbar=r*2pi resonances are easily observable. We have observed high-order
quantum resonances (s>2) utilizing a sample of low temperature, non-condensed
atoms and a pulsed optical standing wave. Resonances are observed for
hbar=(r/16)*4pi r=2-6. Quantum numerical simulations suggest that our
observation of high-order resonances indicates a larger coherence length than
expected from an initially thermal atomic sample
Clock synchronization with dispersion cancellation
The dispersion cancellation feature of pulses which are entangled in
frequency is employed to synchronize clocks of distant parties. The proposed
protocol is insensitive to the pulse distortion caused by transit through a
dispersive medium. Since there is cancellation to all orders, also the effects
of slowly fluctuating dispersive media are compensated. The experimental setup
can be realized with currently available technology, at least for a proof of
principle.Comment: 4 pages, 3 figure
Polymers in the gut compress the colonic mucus hydrogel
Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host–microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer–mucus interactions can be described using a thermodynamic model based on Flory–Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice—whose microbiota degrade gut polymers—did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes
Conditional probabilities in quantum theory, and the tunneling time controversy
It is argued that there is a sensible way to define conditional probabilities
in quantum mechanics, assuming only Bayes's theorem and standard quantum
theory. These probabilities are equivalent to the ``weak measurement''
predictions due to Aharonov {\it et al.}, and hence describe the outcomes of
real measurements made on subensembles. In particular, this approach is used to
address the question of the history of a particle which has tunnelled across a
barrier. A {\it gedankenexperiment} is presented to demonstrate the physically
testable implications of the results of these calculations, along with graphs
of the time-evolution of the conditional probability distribution for a
tunneling particle and for one undergoing allowed transmission. Numerical
results are also presented for the effects of loss in a bandgap medium on
transmission and on reflection, as a function of the position of the lossy
region; such loss should provide a feasible, though indirect, test of the
present conclusions. It is argued that the effects of loss on the pulse {\it
delay time} are related to the imaginary value of the momentum of a tunneling
particle, and it is suggested that this might help explain a small discrepancy
in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts
Quantum Nonlocality in Two-Photon Experiments at Berkeley
We review some of our experiments performed over the past few years on
two-photon interference. These include a test of Bell's inequalities, a study
of the complementarity principle, an application of EPR correlations for
dispersion-free time-measurements, and an experiment to demonstrate the
superluminal nature of the tunneling process. The nonlocal character of the
quantum world is brought out clearly by these experiments. As we explain,
however, quantum nonlocality is not inconsistent with Einstein causality.Comment: 16 pages including 24 figure
Dynamic Energy Management
We present a unified method, based on convex optimization, for managing the
power produced and consumed by a network of devices over time. We start with
the simple setting of optimizing power flows in a static network, and then
proceed to the case of optimizing dynamic power flows, i.e., power flows that
change with time over a horizon. We leverage this to develop a real-time
control strategy, model predictive control, which at each time step solves a
dynamic power flow optimization problem, using forecasts of future quantities
such as demands, capacities, or prices, to choose the current power flow
values. Finally, we consider a useful extension of model predictive control
that explicitly accounts for uncertainty in the forecasts. We mirror our
framework with an object-oriented software implementation, an open-source
Python library for planning and controlling power flows at any scale. We
demonstrate our method with various examples. Appendices give more detail about
the package, and describe some basic but very effective methods for
constructing forecasts from historical data.Comment: 63 pages, 15 figures, accompanying open source librar
Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence
Using a two-photon interference technique, we measure the delay for
single-photon wavepackets to be transmitted through a multilayer dielectric
mirror, which functions as a ``photonic bandgap'' medium. By varying the angle
of incidence, we are able to confirm the behavior predicted by the group delay
(stationary phase approximation), including a variation of the delay time from
superluminal to subluminal as the band edge is tuned towards to the wavelength
of our photons. The agreement with theory is better than 0.5 femtoseconds (less
than one quarter of an optical period) except at large angles of incidence. The
source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure
- …