1,915 research outputs found
Attractions between charged colloids at water interfaces
The effective potential between charged colloids trapped at water interfaces
is analyzed. It consists of a repulsive electrostatic and an attractive
capillary part which asymptotically both show dipole--like behavior. For
sufficiently large colloid charges, the capillary attraction dominates at large
separations.
The total effective potential exhibits a minimum at intermediate separations
if the Debye screening length of water and the colloid radius are of comparable
size.Comment: 8 pages, 1 figure, revised version (one paragraph added) accepted in
JPC
Analytical and experimental study of stratification and liquid-ullage coupling, 1 June 1964 - 31 May 1965
Closed-form solution for stratification of subcooled fluids in containers subjected to heating, and for liquid-ullage vapor couplin
A precursor state to unconventional superconductivity in CeIrIn
We present sensitive measurements of the Hall effect and magnetoresistance in
CeIrIn down to temperatures of 50 mK and magnetic fields up to 15 T. The
presence of a low temperature coherent Kondo state is established. Deviations
from Kohler's rule and a quadratic temperature dependence of the cotangent of
the Hall angle are reminiscent of properties observed in the high temperature
superconducting cuprates. The most striking observation pertains to the
presence of a \textit{precursor} state--characterized by a change in the Hall
mobility--that appears to precede the superconductivity in this material, in
similarity to the pseudogap in the cuprate high superconductors.Comment: 4 figure
Anisotropic Hall Effect in Single Crystal Heavy Fermion YbAgGe
Temperature- and field-dependent Hall effect measurements are reported for
YbAgGe, a heavy fermion compound exhibiting a field-induced quantum phase
transition, and for two other closely related members of the RAgGe series: a
non-magnetic analogue, LuAgGe and a representative, ''good local moment'',
magnetic material, TmAgGe. Whereas the temperature dependent Hall coefficient
of YbAgGe shows behavior similar to what has been observed in a number of heavy
fermion compounds, the low temperature, field-dependent measurements reveal
well defined, sudden changes with applied field; in specific for a
clear local maximum that sharpens as temperature is reduced below 2 K and that
approaches a value of 45 kOe - a value that has been proposed as the
quantum critical point. Similar behavior was observed for where a
clear minimum in the field-dependent Hall resistivity was observed at low
temperatures. Although at our base temperatures it is difficult to distinguish
between the field-dependent behavior predicted for (i) diffraction off a
critical spin density wave or (ii) breakdown in the composite nature of the
heavy electron, for both field directions there is a distinct temperature
dependence of a feature that can clearly be associated with a field-induced
quantum critical point at persisting up to at least 2 K.Comment: revised versio
Hamiltonian approach to the ac Josephson effect in superconducting-normal hybrid systems
The ac Josephson effect in hybrid systems of a normal mesoscopic conductor
coupled to two superconducting (S) leads is investigated theoretically. A
general formula of the ac components of time-dependent current is derived which
is valid for arbitrary interactions in the normal region. We apply this formula
to analyze a S-normal-S system where the normal region is a noninteracting
single level quantum dot. We report the physical behavior of time-averaged
nonequilibrium distribution of electrons in the quantum dot, the formation of
Andreev bound states, and ac components of the time-dependent current. The
distribution is found to exhibit a population inversion; and all Andreev bound
states between the superconducting gap carry the same amount of
current and in the same flow direction. The ac components of time-dependent
current show strong oscillatory behavior in marked contrast to the subharmonic
gap structure of the average current.Comment: 23 pages, 10 figures, LaTe
Towards a better understanding of the dynamic role of the distance language learner: learner perceptions of personality, motivation, roles, and approaches
This study investigated the experience of learners enrolled on an Open University (UK) French course, and included personality factors, motivation, and tutor and student roles. The data gathered via multiple elicitation methods gave useful insights into issues of special relevance to distance language education, in particular the lack of fit between an inherently social discipline such as language learning and the distance context, whose main characterizing feature is remoteness from others. Motivation was seen to play a crucial role in success, along with tutor feedback, and personal responsibility for learning. Increased confidence and self?regulation were beneficial outcomes of the process of learning at a distance, and numerous suggestions for learning approaches based on personal experience were offered for language learners new to distance learning. The study concluded that the task for distance practitioners is to build on the insights shown by learners themselves, in order to target support where it is most needed
Sharing HOL4 and HOL Light proof knowledge
New proof assistant developments often involve concepts similar to already
formalized ones. When proving their properties, a human can often take
inspiration from the existing formalized proofs available in other provers or
libraries. In this paper we propose and evaluate a number of methods, which
strengthen proof automation by learning from proof libraries of different
provers. Certain conjectures can be proved directly from the dependencies
induced by similar proofs in the other library. Even if exact correspondences
are not found, learning-reasoning systems can make use of the association
between proved theorems and their characteristics to predict the relevant
premises. Such external help can be further combined with internal advice. We
evaluate the proposed knowledge-sharing methods by reproving the HOL Light and
HOL4 standard libraries. The learning-reasoning system HOL(y)Hammer, whose
single best strategy could automatically find proofs for 30% of the HOL Light
problems, can prove 40% with the knowledge from HOL4
ac Josephson effect in asymmetric superconducting quantum point contacts
We investigate ac Josephson effects between two superconductors connected by
a single-mode quantum point contact, where the gap amplitudes in the two
superconductors are unequal. In these systems, it was found in previous studies
on the dc effects that, besides the Andreev bound-states, the continuum states
can also contribute to the current. Using the quasiclassical formulation, we
calculate the current-voltage characteristics for general transmission of
the point contact. To emphasize bound versus continuum states, we examine in
detail the low bias, ballistic (D=1) limit. It is shown that in this limit the
current-voltage characteristics can be determined from the current-phase
relation, if we pay particular attention to the different behaviors of these
states under the bias voltage. For unequal gap configurations, the continuum
states give rise to non-zero sine components. We also demonstrate that in this
limit the temperature dependence of the dc component follows
, where is the smaller gap, with the
contribution coming entirely from the bound state.Comment: To appear in PR
c-axis magnetotransport in CeCoIn
We present the results of out-of-plane electrical transport measurements on
the heavy fermion superconductor CeCoIn at temperatures from 40 mK to 400
K and in magnetic field up to 9 T. For 10 K transport measurements show
that the zero-field resistivity changes linearly with temperature
and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (nFL)
behavior associated with a quantum critical point (QCP). The longitudinal
magnetoresistance (LMR) of CeCoIn for fields applied parallel to the
c-axis is negative and scales as between 50 and 100 K, revealing
the presence of a single-impurity Kondo energy scale K.
Beginning at 16 K a small positive LMR feature is evident for fields less than
3 tesla that grows in magnitude with decreasing temperature. For higher fields
the LMR is negative and increases in magnitude with decreasing temperature.
This sizable negative magnetoresistance scales as from 2.6 K to
roughly 8 K, and it arises from an extrapolated residual resistivity that
becomes negative and grows quadratically with field in the nFL temperature
regime. Applying a magnetic field along the c-axis with B B restores
Fermi-liquid behavior in at less than 130 mK. Analysis of the
resistivity coefficient's field-dependence suggests that the QCP in
CeCoIn is located \emph{below} the upper critical field, inside the
superconducting phase. These data indicate that while high- c-axis transport
of CeCoIn exhibits features typical for a heavy fermion system, low-
transport is governed both by spin fluctuations associated with the QCP and
Kondo interactions that are influenced by the underlying complex electronic
structure intrinsic to the anisotropic CeCoIn crystal structure
ac Josephson effect in superconducting d-wave junctions
We study theoretically the ac Josephson effect in superconducting planar
d-wave junctions. The insulating barrier assumed to be present between the two
superconductors may have arbitrary strength. Many properties of this system
depend on the orientation of the d-wave superconductor: we calculate the ac
components of the Josephson current. In some arrangements there is substantial
negative differential conductance due to the presence of mid-gap states. We
study how robust these features are to finite temperature and also comment on
how the calculated current-voltage curves compare with experiments. For some
other configurations (for small barrier strength) we find zero-bias conductance
peaks due to multiple Andreev reflections through midgap states. Moreover, the
odd ac components are strongly suppressed and even absent in some arrangements.
This absence will lead to a doubling of the Josephson frequency. All these
features are due to the d-wave order parameter changing sign when rotated
. Recently, there have been several theoretical reports on parallel
current in the d-wave case for both the stationary Josephson junction and for
the normal metal-superconductor junction. Also in our case there may appear
current density parallel to the junction, and we present a few examples when
this takes place. Finally, we give a fairly complete account of the method used
and also discuss how numerical calculations should be performed in order to
produce current-voltage curves
- …