7,099 research outputs found
Dissipative preparation of entanglement in optical cavities
We propose a novel scheme for the preparation of a maximally entangled state
of two atoms in an optical cavity. Starting from an arbitrary initial state, a
singlet state is prepared as the unique fixed point of a dissipative quantum
dynamical process. In our scheme, cavity decay is no longer undesirable, but
plays an integral part in the dynamics. As a result, we get a qualitative
improvement in the scaling of the fidelity with the cavity parameters. Our
analysis indicates that dissipative state preparation is more than just a new
conceptual approach, but can allow for significant improvement as compared to
preparation protocols based on coherent unitary dynamics.Comment: 4 pages, 2 figure
Effective Hamiltonian Theory and Its Applications in Quantum Information
This paper presents a useful compact formula for deriving an effective
Hamiltonian describing the time-averaged dynamics of detuned quantum systems.
The formalism also works for ensemble-averaged dynamics of stochastic systems.
To illustrate the technique we give examples involving Raman processes,
Bloch-Siegert shifts and Quantum Logic Gates.Comment: 5 pages, 3 figures, to be published in Canadian Journal of Physic
Extending the memory times of trapped-ion qubits with error correction and global entangling operations
The technical demands to perform quantum error correction are considerable.
The task requires the preparation of a many-body entangled state, together with
the ability to make parity measurements over subsets of the physical qubits of
the system to detect errors. Here we propose two trapped-ion experiments to
realise error-correcting codes of variable size to protect a single encoded
qubit from dephasing errors. Novel to our schemes is the use of a global
entangling phase gate, which could be implemented in both Penning traps and
Paul traps. We make use of this entangling operation to significantly reduce
the experimental complexity of state preparation and syndrome measurements. We
also show, in our second scheme, that storage times can be increased further by
repeatedly teleporting the logical information between two codes supported by
the same ion Coulomb crystal to learn information about the locations of
errors. We estimate that a logical qubit encoded in such a crystal will
maintain high coherence for times more than an order of magnitude longer than
each physical qubit would.Comment: 18 pages, 8 figures. The authors list has changed since the first
version of this draf
Optimal Taxation with Household Production.
This paper suggests that the optimal tax system should favour market-produced services which are close substitutes for home-produced services. First, we modify the classical Corlett-Hague rule for optimal commodity taxation by showing that it may be optimal to impose a relatively low tax rate on consumer services even if such services are complements to leisure. Second, we find that when services and other goods are equally substitutable for leisure, so that uniform commodity taxation would be optimal in the absence of home production, the optimal tax structure will certainly involve a relatively low tax rate on consumer services.
- …