13,417 research outputs found

    Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration

    Get PDF
    Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente

    The Effect of the Random Magnetic Field Component on the Parker Instability

    Get PDF
    The Parker instability is considered to play important roles in the evolution of the interstellar medium. Most studies on the development of the instability so far have been based on an initial equilibrium system with a uniform magnetic field. However, the Galactic magnetic field possesses a random component in addition to the mean uniform component, with comparable strength of the two components. Parker and Jokipii have recently suggested that the random component can suppress the growth of small wavelength perturbations. Here, we extend their analysis by including gas pressure which was ignored in their work, and study the stabilizing effect of the random component in the interstellar gas with finite pressure. Following Parker and Jokipii, the magnetic field is modeled as a mean azimuthal component, B(z)B(z), plus a random radial component, ϵ(z)B(z)\epsilon(z) B(z), where ϵ(z)\epsilon(z) is a random function of height from the equatorial plane. We show that for the observationally suggested values of 1/2^{1/2}, the tension due to the random component becomes important, so that the growth of the instability is either significantly reduced or completely suppressed. When the instability still works, the radial wavenumber of the most unstable mode is found to be zero. That is, the instability is reduced to be effectively two-dimensional. We discuss briefly the implications of our finding.Comment: 10 pages including 2 figures, to appear in The Astrophysical Journal Letter

    Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap

    Full text link
    We have observed the persistent flow of Bose-condensed atoms in a toroidal trap. The flow persists without decay for up to 10 s, limited only by experimental factors such as drift and trap lifetime. The quantized rotation was initiated by transferring one unit, \hbar, of the orbital angular momentum from Laguerre-Gaussian photons to each atom. Stable flow was only possible when the trap was multiply-connected, and was observed with a BEC fraction as small as 15%. We also created flow with two units of angular momentum, and observed its splitting into two singly-charged vortices when the trap geometry was changed from multiply- to simply-connected.Comment: 1 file, 5 figure

    Thermomechanical Characterization And Modeling For TSV Structures

    Get PDF
    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente

    Equation of State in Numerical Relativistic Hydrodynamics

    Get PDF
    Relativistic temperature of gas raises the issue of the equation of state (EoS) in relativistic hydrodynamics. We study the EoS for numerical relativistic hydrodynamics, and propose a new EoS that is simple and yet approximates very closely the EoS of the single-component perfect gas in relativistic regime. We also discuss the calculation of primitive variables from conservative ones for the EoS's considered in the paper, and present the eigenstructure of relativistic hydrodynamics for a general EoS, in a way that they can be used to build numerical codes. Tests with a code based on the Total Variation Diminishing (TVD) scheme are presented to highlight the differences induced by different EoS's.Comment: To appear in the ApJS September 2006, v166n1 issue. Pdf with full resolution figures can be downloaded from http://canopus.cnu.ac.kr/ryu/ryuetal.pd

    Minimax optimization of entanglement witness operator for the quantification of three-qubit mixed-state entanglement

    Full text link
    We develop a numerical approach for quantifying entanglement in mixed quantum states by convex-roof entanglement measures, based on the optimal entanglement witness operator and the minimax optimization method. Our approach is applicable to general entanglement measures and states and is an efficient alternative to the conventional approach based on the optimal pure-state decomposition. Compared with the conventional one, it has two important merits: (i) that the global optimality of the solution is quantitatively verifiable, and (ii) that the optimization is considerably simplified by exploiting the common symmetry of the target state and measure. To demonstrate the merits, we quantify Greenberger-Horne-Zeilinger (GHZ) entanglement in a class of three-qubit full-rank mixed states composed of the GHZ state, the W state, and the white noise, the simplest mixtures of states with different genuine multipartite entanglement, which have not been quantified before this work. We discuss some general properties of the form of the optimal witness operator and of the convex structure of mixed states, which are related to the symmetry and the rank of states

    The Propagation of Magneto-Centrifugally Launched Jets: I

    Get PDF
    We present simulations of the propagation of magnetized jets. This work differs from previous studies in that the cross-sectional distributions of the jets's state variables are derived from analytical models for magneto-centrifugal launching. The source is a magnetized rotator whose properties are specfied as boundary conditions. The jets in these simulations are considerably more complex than the ``top-hat''constant density etc. profiles used in previous work. We find that density and magnetic field stratification (with radius) in the jet leads to new behavior including the separation of an inner jet core from a low density collar. We find this {\it jet within a jet} structure, along with the magnetic stresses, leads to propagation behaviors not observed in previous simulation studies. Our methodology allows us to compare MHD jets from different types of sources whose properties could ultimately be derived from the behavior of the propagating jets.Comment: 42 pages, accepted by the Ap
    corecore