24 research outputs found

    Mass spectrometry-based absolute quantification of 20S proteasome status for controlled ex-vivo expansion of Human Adipose-derived Mesenchymal Stromal/Stem Cells

    Get PDF
    The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects

    High Abundance Proteins Depletion vs Low Abundance Proteins Enrichment: Comparison of Methods to Reduce the Plasma Proteome Complexity

    Get PDF
    BACKGROUND: To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration. CONCLUSIONS/SIGNIFICANCE: Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol

    Computational Prediction of Host-Parasite Protein Interactions between P. falciparum and H. sapiens

    Get PDF
    To obtain candidates of interactions between proteins of the malaria parasite Plasmodium falciparum and the human host, homologous and conserved interactions were inferred from various sources of interaction data. Such candidate interactions were assessed by applying a machine learning approach and further filtered according to expression and molecular characteristics, enabling involved proteins to indeed interact. The analysis of predicted interactions indicated that parasite proteins predominantly target central proteins to take control of a human host cell. Furthermore, parasite proteins utilized their protein repertoire in a combinatorial manner, providing a broad connection to host cellular processes. In particular, several prominent pathways of signaling and regulation proteins were predicted to interact with parasite chaperones. Such a result suggests an important role of remodeling proteins in the interaction interface between the human host and the parasite. Identification of such molecular strategies that allow the parasite to take control of the host has the potential to deepen our understanding of the parasite specific remodeling processes of the host cell and illuminate new avenues of disease intervention

    Accessing to the minor proteome of red blood cells through the influence of the nanoparticle surface properties on the corona composition

    No full text
    Affif Zaccaria,1,* Florence Roux-Dalvai,2,3,* Ali Bouamrani,1 Adrien Mombrun,1 Pascal Mossuz,4 Bernard Monsarrat,2,3 Fran&ccedil;ois Berger1 1Clinatec CEA-LETI, Grenoble, 2CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 3Universit&eacute; de Toulouse, UPS, IPBS, Toulouse, 4TIMC-Therex UMR 5525 CNRS, UJF, CHU Grenoble, Grenoble, France *These authors contributed equally to&nbsp;this work Abstract: Nanoparticle (NP)&ndash;protein interactions in complex samples have not yet been clearly understood. Nevertheless, several studies demonstrated that NP&rsquo;s physicochemical features significantly impact on the protein corona composition. Taking advantage of the NP potential to harvest different subsets of proteins, we assessed for the first time the capacity of three kinds of superparamagnetic NPs to highlight the erythrocyte minor proteome. Using both qualitative and quantitative proteomics approaches, nano-liquid chromatography&ndash;tandem mass spectrometry allowed the identification of 893 different proteins, confirming the reproducible capacity of NPs to increase the number of identified proteins, through a reduction of the sample concentration range and the capture of specific proteins on the three different surfaces. These NP-specific protein signatures revealed significant differences in their isoelectric point and molecular weight. Moreover, this NP strategy offered a deeper access to the erythrocyte proteome highlighting several signaling pathways implicated in important erythrocyte functions. The automated potentiality, the reproducibility, and the low-consuming sample demonstrate the strong compatibility of our strategy for large-scale clinical studies and may become a standardized sample preparation in future erythrocyte-associated proteomics studies. Keywords: nanoparticles, red blood cells, mass spectrometry, quantitative proteomics, protein corona, minor proteome&nbsp

    Extensive analysis of the cytoplasmic proteome of human erythrocytes using the Peptide ligand library technology and advanced mass spectrometry

    No full text
    The erythrocyte cytoplasmic proteome is composed of 98% hemoglobin; the remaining 2% is largely unexplored. Here we used a combinatorial library of hexameric peptides as a capturing agent to lower the signal of hemoglobin and amplify the signal of low to very low abundance proteins in the cytoplasm of human red blood cells (RBCs). Two types of hexapeptide library beads have been adopted: amino-terminal hexapeptide beads and beads in which the peptides have been further derivatized by carboxylation. The amplification of the signal of low abundance and suppression of the signal of high abundance species were fully demonstrated by two-dimensional gel maps and nano-LC-MSMS analysis. The effect of this new methodology on quantitative information also was explored. Moreover using this approach on an LTQ-Orbitrap mass spectrometer, we could identify with high confidence as many as 1578 proteins in the cytoplasmic fraction of a highly purified preparation of RBCs, allowing a deep exploration of the classical RBC pathways as well as the identification of unexpected minor proteins. In addition, we were able to detect the presence of eight different hemoglobin chains including embryonic and newly discovered globin chains. Thus, this extensive study provides a huge data set of proteins that are present in the RBC cytoplasm that may help to better understand the biology of this simplified cell and may open the way to further studies on blood pathologies using targeted approache
    corecore