460 research outputs found
Small-scale structures and the density irregularity of the inner corona
The observational evidence is considered that the electron density irregularity factor is much greater than unity in the inner corona, in particular, evidence derived from the photometric comparison of the K-corona emission p Beta with the EUV emission from coronal ions. A simple mathematical model was developed for the irregularity having a minimum number of parameters. This model was used to explore some implications of the observations and to show that well-known resolved structures such as polar plumes and coronal loops as presently understood cannot alone explain the irregularity
Modeling Solar Lyman Alpha Irradiance
Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha
Facet ridge end points in crystal shapes
Equilibrium crystal shapes (ECS) near facet ridge end points (FRE) are
generically complex. We study the body-centered solid-on-solid model on a
square lattice with an enhanced uniaxial interaction range to test the
stability of the so-called stochastic FRE point where the model maps exactly
onto one dimensional Kardar-Parisi-Zhang type growth and the local ECS is
simple. The latter is unstable. The generic ECS contains first-order ridges
extending into the rounded part of the ECS, where two rough orientations
coexist and first-order faceted to rough boundaries terminating in
Pokrovsky-Talapov type end points.Comment: Contains 4 pages, 5 eps figures. Uses RevTe
General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer
The general splicing factor SF2/ASF binds in a sequence-specific manner to a purine-rich exonic splicing enhancer (ESE) in the last exon of bovine growth hormone (bGH) pre-mRNA. More importantly, SF2/ASF stimulates in vitro splicing of bGH intron D through specific interaction with the ESE sequences. However, another general splicing factor, SC35, does not bind the ESE sequences and has no effect on bGH intron D splicing. Thus, one possible function of SF2/ASF in alternative and, perhaps, constitutive pre-mRNA splicing is to recognize ESE sequences. The stimulation of bGH intron D splicing by SF2/ASF is counteracted by the addition of hnRNP A1. The relative levels of SF2/ASF and hnRNP A1 influence the efficiency of bGH intron D splicing in vitro and may be the underlying mechanism of this alternative pre-mRNA processing event in vivo
Nanoscale Equilibrium Crystal Shapes
The finite size and interface effects on equilibrium crystal shape (ECS) have
been investigated for the case of a surface free energy density including step
stiffness and inverse-square step-step interactions. Explicitly including the
curvature of a crystallite leads to an extra boundary condition in the solution
of the crystal shape, yielding a family of crystal shapes, governed by a shape
parameter c. The total crystallite free energy, including interface energy, is
minimized for c=0, yielding in all cases the traditional PT shape (z x3/2).
Solutions of the crystal shape for c≠0 are presented and discussed in the
context of meta-stable states due to the energy barrier for nucleation.
Explicit scaled relationships for the ECS and meta-stable states in terms of
the measurable step parameters and the interfacial energy are presented.Comment: 35 page
Temperature Dependence of Facet Ridges in Crystal Surfaces
The equilibrium crystal shape of a body-centered solid-on-solid (BCSOS) model
on a honeycomb lattice is studied numerically. We focus on the facet ridge
endpoints (FRE). These points are equivalent to one dimensional KPZ-type growth
in the exactly soluble square lattice BCSOS model. In our more general context
the transfer matrix is not stochastic at the FRE points, and a more complex
structure develops. We observe ridge lines sticking into the rough phase where
thesurface orientation jumps inside the rounded part of the crystal. Moreover,
the rough-to-faceted edges become first-order with a jump in surface
orientation, between the FRE point and Pokrovsky-Talapov (PT) type critical
endpoints. The latter display anisotropic scaling with exponent instead
of familiar PT value .Comment: 12 pages, 19 figure
Observations of a solar flare and filament eruption in Lyman <span class='mathrm'>α</span> and X-rays
<p><b>Context</b>: Lα is a strong chromospheric emission line, which has been relatively rarely observed in flares. The Transition Region and Coronal Explorer (TRACE) has a broad “Lyman α” channel centered at 1216 Å used primarily at the beginning of the mission. A small number of flares were observed in this channel.</p>
<p><b>Aims</b>: We aim to characterise the appearance and behaviour of a flare and filament ejection which occurred on 8th September 1999 and was observed by TRACE in Lα, as well as by the Yohkoh Soft and Hard X-ray telescopes. We explore the flare energetics and its spatial and temporal evolution. We have in mind the fact that the Lα line is a target for the Extreme Ultraviolet Imaging telescope (EUI) which has been selected for the Solar Orbiter mission, as well as the LYOT telescope on the proposed SMESE mission.</p>
<p><b>Methods</b>: We use imaging data from the TRACE 1216 Å, 1600 Å and 171 Å channels, and the Yohkoh hard and soft X-ray telescopes. A correction is applied to the TRACE data to obtain a better estimate of the pure Lα signature. The Lα power is obtained from a knowledge of the TRACE response function, and the flare electron energy budget is estimated by interpreting Yohkoh/HXT emission in the context of the collisional thick target model.</p>
<p><b>Results</b>: We find that the Lα flare is characterised by strong, compact footpoints (smaller than the UV ribbons) which correlate well with HXR footpoints. The Lα power radiated by the flare footpoints can be estimated, and is found to be on the order of 1026 erg s-1 at the peak. This is less than 10% of the power inferred for the electrons which generate the co-spatial HXR emission, and can thus readily be provided by them. The early stages of the filament eruption that accompany the flare are also visible, and show a diffuse, roughly circular spreading sheet-like morphology, with embedded denser blobs.</p>
<p><b>Conclusions</b>: On the basis of this observation, we conclude that flare and filament observations in the Lα line with the planned EUI and LYOT telescopes will provide valuable insight into solar flare evolution and energetics, especially when accompanied by HXR imaging and spectroscopy.</p>
Which solar EUV indices are best for reconstructing the solar EUV irradiance ?
The solar EUV irradiance is of key importance for space weather. Most of the
time, however, surrogate quantities such as EUV indices have to be used by lack
of continuous and spectrally resolved measurements of the irradiance. The
ability of such proxies to reproduce the irradiance from different solar
atmospheric layers is usually investigated by comparing patterns of temporal
correlations. We consider instead a statistical approach. The TIMED/SEE
experiment, which has been continuously operating since Feb. 2002, allows for
the first time to compare in a statistical manner the EUV spectral irradiance
to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices,
and the He I equivalent width.
Using multivariate statistical methods such as multidimensional scaling, we
represent in a single graph the measure of relatedness between these indices
and various strong spectral lines. The ability of each index to reproduce the
EUV irradiance is discussed; it is shown why so few lines can be effectively
reconstructed from them. All indices exhibit comparable performance, apart from
the sunspot number, which is the least appropriate. No single index can
satisfactorily describe both the level of variability on time scales beyond 27
days, and relative changes of irradiance on shorter time scales.Comment: 6 figures, to appear in Adv. Space. Re
- …