17 research outputs found

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure

    Ground state and finite temperature behavior of 1/4-filled band zigzag ladders

    Full text link
    We consider the simplest example of lattice frustration in the 1/4-filled band, a one-dimensional chain with next-nearest neighbor interactions. For this zigzag ladder with electron-electron as well as electron-phonon interactions we present numerical results for ground state as well as thermodynamic properties. In this system the ground state bond distortion pattern is independent of electron-electron interaction strength. The spin gap in the ground state of the zigzag ladder increases with the degree of frustration. Unlike in one-dimension, where the spin-gap and charge ordering transitions can be distinct, we show that in the ladder they occur simultaneously. We discuss spin gap and charge ordering transitions in 1/4-filled materials with one, two, or three dimensional crystal structures. We show empirically that regardless of dimensionality the occurrence of simultaneous or distinct charge and magnetic transitions can be correlated with the ground state bond distortion pattern.Comment: 12 pages, 8 eps figure
    corecore