5,239 research outputs found

    Uncertainty from Heisenberg to Today

    Full text link
    We explore the different meanings of "quantum uncertainty" contained in Heisenberg's seminal paper from 1927, and also some of the precise definitions that were explored later. We recount the controversy about "Anschaulichkeit", visualizability of the theory, which Heisenberg claims to resolve. Moreover, we consider Heisenberg's programme of operational analysis of concepts, in which he sees himself as following Einstein. Heisenberg's work is marked by the tensions between semiclassical arguments and the emerging modern quantum theory, between intuition and rigour, and between shaky arguments and overarching claims. Nevertheless, the main message can be taken into the new quantum theory, and can be brought into the form of general theorems. They come in two kinds, not distinguished by Heisenberg. These are, on one hand, constraints on preparations, like the usual textbook uncertainty relation, and, on the other, constraints on joint measurability, including trade-offs between accuracy and disturbance.Comment: 36 pages, 1 figur

    Heisenberg uncertainty for qubit measurements

    Get PDF
    Reports on experiments recently performed in Vienna [Erhard et al, Nature Phys. 8, 185 (2012)] and Toronto [Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenberg's error-disturbance relation. In contrast, we have presented and proven a Heisenberg-type relation for joint measurements of position and momentum [Phys. Rev. Lett. 111, 160405 (2013)]. To resolve the apparent conflict, we formulate here a new general trade-off relation for errors in qubit measurements, using the same concepts as we did in the position-momentum case. We show that the combined errors in an approximate joint measurement of a pair of +/-1 valued observables A,B are tightly bounded from below by a quantity that measures the degree of incompatibility of A and B. The claim of a violation of Heisenberg is shown to fail as it is based on unsuitable measures of error and disturbance. Finally we show how the experiments mentioned may directly be used to test our error inequality.Comment: Version 3 contains further clarifications in our argument refuting the alleged violation of Heisenberg's error-disturbance relation. Some new material added on the connection between preparation uncertainty and approximation error relation

    Quantum sensing

    Full text link
    "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits. The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science. In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist.Comment: 45 pages, 13 figures. Submitted to Rev. Mod. Phy
    • …
    corecore