35 research outputs found
Advanced composite material simulation
A computational methodology is presented for modeling the non-linear mechanical behavior of composite structures made of FRP (Fiber-Reinforced Polymers) laminates. The model is based on the appropriate combination of the constitutive models of compounding materials, considered to behave as isolated continua, together with additional “closure equations” that characterize the micro-mechanics of the composite from a morphological point of view. To this end, any appropriate constitutive model may be selected for each phase. Each component is modeled separately and the global response is obtained by assembling all contributions taking into account the interactions between components in a general phenomenological way.
To model the behavior of a single uni-directional (UD) composite laminated, a Serial-Parallel continuum approach has been
developed assuming that components behave as parallel materials in the fibers alignment direction and as serial materials in
orthogonal directions. Taking into account the internal morphology of the composite material, it is devised a strategy for
decoupling and coupling component phases. This methodology [Rastellini 2006], named "compounding of behavior", allows
to take into consideration local non linear phenomenon in the compounding materials, like damage, plasticity, etc. in a
coupled manner. It is based on the proper management of homogenous constitutive models, already available for each
component. In this way, it is used all developments achieved in constitutive modeling for plain materials, what makes
possible the transference of this technology to composites. A laminated theory complemented with the proposed UD model is
employed to describe the mechanical behavior of multi-directional laminates. A specific solution strategy for the general non
linear case is proposed. It provides quick local and global convergences, what makes the model suitable for large scale
structures. The model brings answers on the non-linear behavior of composites, where classical micro-mechanics formulas
are restricted to their linear elastic part. The methodology is validated through several numerical analyses and contrasted against experimental data and benchmark tests.Peer ReviewedPostprint (published version
Modelización numérica de la no-linealidad constitutiva de laminados compuestos
La respuesta mecánica de los materiales compuestos depende del comportamiento de los
materiales componentes y de su micro‐estructura.
Para mejorar y optimizar el diseño de piezas estructurales de materiales compuestos, la industria
requiere herramientas informáticas que reproduzcan de manera apropiada el comportamiento de estos
materiales incluso en el rango no lineal. Por tanto, es muy importante la investigación y
desarrollo de modelos numéricos para compuestos que tengan en cuenta la morfología o estructura
del material de forma adecuada y eficiente, además de ser necesario contar con un entorno gráfico
específico para este tipo de problemas que facilite la entrada de datos al código de cálculo y
posteriormente permita visualizar los resultados deseados.
El objetivo principal del presente trabajo es el desarrollo, formulación e implementación
computacional, de un modelo numérico para el tratamiento de la no linealidad constitutiva de
laminados reforzados con fibras, en el contexto de la mecánica de los medios continuos. Esta
formulación plantea combinar (o componer) los comportamientos de materiales simples (homogéneos)
con el objetivo de obtener la respuesta mecánica del material compuesto (heterogéneo). Para ello,
propone una gestión adecuada de los modelos constitutivos (homogéneos), actualmente disponibles, de
cada uno de los materiales componentes; aprovechándose de esta manera el gran desarrollo conseguido
en el campo de la modelización constitutiva de materiales simples, y permitiendo la transferencia
de toda esta tecnología al campo de los materiales compuestos. Teniendo en cuenta la estructura
interna del material compuesto, se desarrolla una estrategia de desacoplamiento e interacción de
estas fases; de una manera novedosa. Esta metodología, denominada “composición de comportamientos”,
permite tener en cuenta muchos fenómenos locales de degradación que tienen lugar en las fases
componentes, tales como plasticidad, daño, fatiga, envejecimiento, fluencia, etc., de una manera
acoplada, lo cual también es novedoso en este tipo de enfoque. Las aplicaciones del presente
trabajo se centran en los tres primeros fenómenos mencionados, dado que su combinación permite
simular el comportamiento de una extensa variedad de materiales compuestos empleados en la
industria.
Se desarrolla el algoritmo de resolución del modelo propuesto que permite conseguir convergencia
cuadrática, tanto local como global, de los problemas no‐ lineales al ser implementado como modelo
constitutivo en un código de elementos finitos, proveyendo rapidez y precisión al análisis de
estructuras de
materiales compuestos en muchas aplicaciones industriales.
La simulación del laminado se logra mediante la combinación del modelo
propuesto con una teoría de laminado aplicada en cada punto de integración. Se
emplean elementos 3D sólidos isoparamétricos para discretizar estructuras
laminadas gruesas; mientras que para estudiar estructuras laminares de pequeño
espesor, se desarrolla un elemento de lámina laminado en capas de material
compuesto, sobre la base de un elemento de lámina más simple (Discrete Kirchoff
Triangle).
La validación del modelo muestra el cumplimiento de las ecuaciones de cierre
(equilibrio de tensiones y compatibilidad de deformaciones entre componentes),
tanto en la dirección de las fibras (comportamiento en paralelo) como en
direcciones ortogonales (comportamiento en serie). Además, se ilustran diversas
envolventes de fallo para lámina/laminados generadas con el modelo propuesto y
se las compara con otros criterios de fallo global para compuestos y resultados
experimentales disponibles en la literatura.
La aplicabilidad del modelo se demuestra mediante simulaciones numéricas
realizadas sobre geometrías de mayor complejidad para modelar la respuesta
mecánica de piezas industriales. Los resultados numéricos contrastados con los
experimentales indican la capacidad del modelo propuesto para describir el
comportamiento no‐lineal de laminados reforzados con fibras en diferentes
orientaciones sometidos a estados de carga multiaxial tanto estática como cíclica
Advanced composite material simulation
A computational methodology is presented for modelling the material non-linear mechanical
behaviour of composite structures made of FRP (Fibre-Reinforced Polymers) laminates.
The model is based on the appropriate combination of the constitutive models of component materials, considered to behave as isolated continua, together with additional ‘closure equations’ that characterize the micromechanics of the composite from a morphological point of view. To this end, any appropriate
constitutive model may be selected for each phase. Each component is modelled separately and the global response is obtained by assembling all contributions taking into account the interactions between
components in a general phenomenological way.
To model the behaviour of a single unidirectional (UD) composite lamina, a Serial-Parallel continuum approach has been developed assuming that components behave as parallel materials in the fibres alignment direction and as serial materials in orthogonal directions. Taking into account the internal morphology of the composite material, it is devised a strategy for decoupling and coupling component phases. This methodology [Rastellini 2006], named “compounding of behaviours”, allows to take into consideration local degradation phenomena (in the constituents materials), like plasticity, etc. in a coupled manner. It is based on the proper management of homogenous constitutive models, already
available for each component. In this way, it is used all developments achieved in constitutive modelling of plain materials, what makes possible the transference of this technology to composites. A lamination theory complemented with the proposed UD model is employed to describe the mechanical
behaviour of multidirectional laminates. A specific solution strategy for the general non linear case is proposed. It provides quick local and global convergences, what makes the model suitable for large scale structures. The model brings answers on the non-linear behaviour of composites, where classical micro-mechanics formulas are restricted to their linear elastic part. The methodology is validated through several numerical analyses and contrasted against experimental data and benchmark tests.Peer ReviewedPostprint (published version
Advanced composite material simulation
A computational methodology is presented for modeling the non-linear mechanical behavior of composite structures made of FRP (Fiber-Reinforced Polymers) laminates. The model is based on the appropriate combination of the constitutive models of compounding materials, considered to behave as isolated continua, together with additional “closure equations” that characterize the micro-mechanics of the composite from a morphological point of view. To this end, any appropriate constitutive model may be selected for each phase. Each component is modeled separately and the global response is obtained by assembling all contributions taking into account the interactions between components in a general phenomenological way.
To model the behavior of a single uni-directional (UD) composite laminated, a Serial-Parallel continuum approach has been
developed assuming that components behave as parallel materials in the fibers alignment direction and as serial materials in
orthogonal directions. Taking into account the internal morphology of the composite material, it is devised a strategy for
decoupling and coupling component phases. This methodology [Rastellini 2006], named "compounding of behavior", allows
to take into consideration local non linear phenomenon in the compounding materials, like damage, plasticity, etc. in a
coupled manner. It is based on the proper management of homogenous constitutive models, already available for each
component. In this way, it is used all developments achieved in constitutive modeling for plain materials, what makes
possible the transference of this technology to composites. A laminated theory complemented with the proposed UD model is
employed to describe the mechanical behavior of multi-directional laminates. A specific solution strategy for the general non
linear case is proposed. It provides quick local and global convergences, what makes the model suitable for large scale
structures. The model brings answers on the non-linear behavior of composites, where classical micro-mechanics formulas
are restricted to their linear elastic part. The methodology is validated through several numerical analyses and contrasted against experimental data and benchmark tests.Peer Reviewe
Advanced composite material simulation
A computational methodology is presented for modelling the material non-linear mechanical
behaviour of composite structures made of FRP (Fibre-Reinforced Polymers) laminates.
The model is based on the appropriate combination of the constitutive models of component materials, considered to behave as isolated continua, together with additional ‘closure equations’ that characterize the micromechanics of the composite from a morphological point of view. To this end, any appropriate
constitutive model may be selected for each phase. Each component is modelled separately and the global response is obtained by assembling all contributions taking into account the interactions between
components in a general phenomenological way.
To model the behaviour of a single unidirectional (UD) composite lamina, a Serial-Parallel continuum approach has been developed assuming that components behave as parallel materials in the fibres alignment direction and as serial materials in orthogonal directions. Taking into account the internal morphology of the composite material, it is devised a strategy for decoupling and coupling component phases. This methodology [Rastellini 2006], named “compounding of behaviours”, allows to take into consideration local degradation phenomena (in the constituents materials), like plasticity, etc. in a coupled manner. It is based on the proper management of homogenous constitutive models, already
available for each component. In this way, it is used all developments achieved in constitutive modelling of plain materials, what makes possible the transference of this technology to composites. A lamination theory complemented with the proposed UD model is employed to describe the mechanical
behaviour of multidirectional laminates. A specific solution strategy for the general non linear case is proposed. It provides quick local and global convergences, what makes the model suitable for large scale structures. The model brings answers on the non-linear behaviour of composites, where classical micro-mechanics formulas are restricted to their linear elastic part. The methodology is validated through several numerical analyses and contrasted against experimental data and benchmark tests.Peer Reviewe