207,872 research outputs found
Quantum Gravity Corrections to the One Loop Scalar Self-Mass during Inflation
We compute the one loop corrections from quantum gravity to the
self-mass-squared of a massless, minimally coupled scalar on a locally de
Sitter background. The calculation was done using dimensional regularization
and renormalized by subtracting fourth order BPHZ counterterms. Our result
should determine whether quantum gravitational loop corrections can
significantly alter the dynamics of a scalar inflaton.Comment: 47 pages, 3 figures, 20 tables, uses LaTeX 2 epsilon, version 2
revised for publication in Physical Review
Spin susceptibility of neutron matter at zero temperature
The Auxiliary Field Diffusion Monte Carlo method is applied to compute the
spin susceptibility and the compressibility of neutron matter at zero
temperature. Results are given for realistic interactions which include both a
two-body potential of the Argonne type and the Urbana IX three-body potential.
Simulations have been carried out for about 60 neutrons. We find an overall
reduction of the spin susceptibilty by about a factor 3 with respect to the
Pauli susceptibility for a wide range of densities. Results for the
compressibility of neutron matter are also presented and compared with other
available estimates obtained for semirealistic nucleon-nucleon interactions by
using other techniques
Exclusive semileptonic B decays to radially excited D mesons
Exclusive semileptonic B decays to radially excited charmed mesons are
investigated at the first order of the heavy quark expansion. The arising
leading and subleading Isgur-Wise functions are calculated in the framework of
the relativistic quark model. It is found that the 1/m_Q corrections play an
important role and substantially modify results. An interesting interplay
between different corrections is found. As a result the branching ratio for the
B-> D'e\nu decay is essentially increased by 1/m_Q corrections, while the one
for B-> D*'e\nu is only slightly influenced by them.Comment: 19 pages, revtex, 6 figures, uses rotating.st
Optical Identification of Four Hard X-ray Sources from the Swift All-Sky Survey
We present the results of our optical identifications of four hard X-ray
sources from the Swift all-sky survey. We obtained optical spectra for each of
the program objects with the 6-m BTA telescope (Special Astrophysical
Observatory, Russian Academy of Sciences, Nizhnii Arkhyz), which allowed their
nature to be established. Two sources (SWIFT J2237.2+6324} and SWIFT
J2341.0+7645) are shown to belong to the class of cataclysmic variables
(suspected polars or intermediate polars). The measured emission line width
turns out to be fairly large (FWHM ~ 15-25 A), suggesting the presence of
extended, rapidly rotating (v~400-600 km/s) accretion disks in the systems.
Apart from line broadening, we have detected a change in the positions of the
line centroids for SWIFT J2341.0+7645, which is most likely attributable to the
orbital motion of the white dwarf in the binary system. The other two program
objects (SWIFT J0003.3+2737 and SWIFT J0113.8+2515) are extragalactic in
origin: the first is a Seyfert 2 galaxy and the second is a blazar at redshift
z=1.594. Apart from the optical spectra, we provide the X-ray spectra for all
sources in the 0.6-10 keV energy band obtained from XRT/Swift data.Comment: 9 pages, 6 figures, will be published in Astronomy Letters, 38, No.5,
pp.281-289 (2012
STOCHASTIC DYNAMICS OF LARGE-SCALE INFLATION IN DE~SITTER SPACE
In this paper we derive exact quantum Langevin equations for stochastic
dynamics of large-scale inflation in de~Sitter space. These quantum Langevin
equations are the equivalent of the Wigner equation and are described by a
system of stochastic differential equations. We present a formula for the
calculation of the expectation value of a quantum operator whose Weyl symbol is
a function of the large-scale inflation scalar field and its time derivative.
The unique solution is obtained for the Cauchy problem for the Wigner equation
for large-scale inflation. The stationary solution for the Wigner equation is
found for an arbitrary potential. It is shown that the large-scale inflation
scalar field in de Sitter space behaves as a quantum one-dimensional
dissipative system, which supports the earlier results. But the analogy with a
one-dimensional model of the quantum linearly damped anharmonic oscillator is
not complete: the difference arises from the new time dependent commutation
relation for the large-scale field and its time derivative. It is found that,
for the large-scale inflation scalar field the large time asymptotics is equal
to the `classical limit'. For the large time limit the quantum Langevin
equations are just the classical stochastic Langevin equations (only the
stationary state is defined by the quantum field theory).Comment: 21 pages RevTex preprint styl
Stressed caregivers. An observational study in a rehabilitation care home in western Sicily
Introduction: Caregiver is the person who takes care of the patient from the practical point of view, helping him in managing the disease and carrying out daily activities, but also supporting him on an emotional level. Caregiver burnout is a state of physical, emotional, and mental exhaustion that may be accompanied by a change in attitude from positive and caring to negative and unconcerned. The aim of the study was to understand what factors were associated with having panic attacks or crying crises in the caregivers of our study population. Materials and methods: The study design is observational. An anonymous questionnaire was administered to caregivers of the patients of a hospital for the intensive post-acute rehabilitation from April 2016 to December 2018. The statistical significance level chosen for the entire analysis was 0.05. The covariates to be included were selected using a stepwise backward selection process, with a univariate p-value <0.25 as the main criterion. Results are expressed as adjusted Odds Ratio (aOR) with 95% Confidence Intervals (CI). Results: The sample consists of 302 caregivers (60.93% was females and 39.07% was males). The mean age of the sample is 53.42 years old (SD ± 12.19). The multivariable logistic regression model shows that the risk to have panic or crying crisis is significantly associated with the following indipendent variables: female gender (aOR 27.06); living with the patient (aOR 4.38); had claimed that the problems related to the illness of their family member is a source of stress (aOR 23.54), smoking cigarettes (aOR 14.68); had claimed that taking care of their client affected their personal financial statement/career (aOR 5.95), having free time (aOR 7.68). Conclusions: In our study we found a greater probability of having panic attacks or crying crises in female subjects, smokers, who think they have sacrificed their careers to take care of the person they follow from a welfare point of view. Certainly in the light of what has emerged it is necessary to dedicate and pay close attention to the psychological and social aspects of the caregiver
Low-energy theorems of QCD and bulk viscosity at finite temperature and baryon density in a magnetic field
The nonperturbative QCD vacuum at finite temperature and a finite baryon
density in an external magnetic field is studied. Equations relating
nonperturbative condensates to the thermodynamic pressure for , and are obtained, and low-energy theorems are derived. A bulk
viscosity is expressed in terms of basic thermodynamical
quantities describing the quark-gluon matter at , , and
. Various limiting cases are also considered.Comment: 12 pages; v2: title changed, new section about bulk viscosity and new
references added; v3: new discussion adde
THERMAL DENATURATION OF MONOMERIC AND TRIMERIC PHYCOCYANINS STUDIED BY STATIC AND SPECTROSCOPY POLARIZED TIME-RESOLVED FLUORESCENCE
C-Phycocyanin (PC) and allophycocyanin (APC). as well as the a-subunit of PC. have been
isolated from the blue-green alga (cyanobacterium). Spirulina platensis. The effects of partial thermal
denaturation of PC and of its state of aggregation have been studied by ps time-resolved, polarized
fluorescence spectroscopy. All measurements have been performed under low photon fluxes (< 10’ ’
photonsipulse x cm’) to minimize singlet-singlet annihilation processes. A complex decay is obtained
under most conditions, which can be fitted satisfactorily with a bi-exponential (7’ = 70400 ps. T? =
1000-3000 ps) for both the isotropic and the polarized part, but with different intensities and time
constants for the two decay curves. The data are interpreted in the frameworkof the model first developed
by Teak and Dale (Biochern. J. 116, 161 (1970)], which divides the spectroscopically different
chromophores in (predominantly) sensitizing (s) and fluorescing U, ones. If one assumes temperature
dependent losses in the energy transfer from the s to the f and between f chromophores. both the
biexponential nature of the isotropic fluorescence decay and the polarization data can be rationalized. In
the isotropic emission (corresponding to the population of excited states) the short lifetime is related to the
s-,f transfer. the longer one to the “free“ decay of the final acceptor(s) (= f). The polarized part is
dominated by an extremely short decay time. which is related to s+f transfer, as well as to resonance
transfer between the f-chromophores
- …