953,335 research outputs found
Lightweight inflatable material with low permeability
Material features combination of Mylar, for strength, and Saran, for impermeable qualities. Second lamination of Mylar prevents blocking, adds strength, and increases barrier rating. Different combinations of laminations produce variety of thicknesses and barrier ratings. Material can be metallized for increased barrier reliability and radar reflectivity, and can be treated with a heat-resistant coating
On the correction of anomalous phase oscillation in entanglement witnesses using quantum neural networks
Entanglement of a quantum system depends upon relative phase in complicated
ways, which no single measurement can reflect. Because of this, entanglement
witnesses are necessarily limited in applicability and/or utility. We propose
here a solution to the problem using quantum neural networks. A quantum system
contains the information of its entanglement; thus, if we are clever, we can
extract that information efficiently. As proof of concept, we show how this can
be done for the case of pure states of a two-qubit system, using an
entanglement indicator corrected for the anomalous phase oscillation. Both the
entanglement indicator and the phase correction are calculated by the quantum
system itself acting as a neural network
Isostaticity in two dimensional pile of rigid disks
We study the static structure of piles made of polydisperse disks in the
rigid limit with and without friction using molecular dynamic simulations for
various elasticities of the disks and pile preparation procedures. The
coordination numbers are calculated to examine the isostaticity of the pile
structure. For the frictionless pile, it is demonstrated that the coordination
number converges to 4 in the rigid limit, which implies that the structure of
rigid disk pile is isostatic. On the other hand, for the frictional case with
the infinite friction constant, the coordination number depends on the
preparation procedure of the pile, but we find that the structure becomes very
close to isostatic with the coordination number close to 3 in the rigid limit
when the pile is formed through the process that tends to make a pile of random
configuration.Comment: 3 pages, 3 figures, Submitted to J. Phys. Soc. Jp
Lightweight, variable solidity knitted parachute fabric
A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection
Duality between Topologically Massive and Self-Dual models
We show that, with the help of a general BRST symmetry, different theories in
3 dimensions can be connected through a fundamental topological field theory
related to the classical limit of the Chern-Simons model.Comment: 13 pages, LaTe
Thermal stress analysis of ceramic gas-path seal components for aircraft turbines
Stress and temperature distributions were evaluated numerically for a blade-tip seal system proposed for gas turbine applications. The seal consists of an abradable ceramic layer on metallic backing with intermediate layers between the ceramic layer and metal substrate. The most severe stresses in the seal, as far as failure is concerned, are tensile stresses at the top of the ceramic layer and shear and normal stresses at the layer interfaces. All these stresses reach their maximum values during the deceleration phase of a test engine cycle. A parametric study was carried out to evaluate the influence of various design parameters on these critical stress values. The influences of material properties and geometric parameters of the ceramic, intermediate, and backing layers were investigated. After the parametric study was completed, a seal system was designed which incorporated materials with beneficial elastic and thermal properties in each layer of the seal. An analysis of the proposed seal design shows an appreciable decrease in the magnitude of the maximum critical stresses over those obtained with earlier configurations
Probing embedded star clusters in the HII complex NGC 6357 with VVV
NGC 6357 is an active star-forming region located in the Sagittarius arm
displaying several star clusters, which makes it a very interesting target to
investigate star formation and early cluster evolution. We explore NGC 6357
with the "VISTA Variables in the V\'ia a L\'actea" (VVV) photometry of seven
embedded clusters (ECs), and one open cluster (OC) projected in the outskirts
of the complex.Photometric and structural properties (age, reddening, distance,
core and total radii) of the star clusters are derived. VVV saturated stars are
replaced by their 2MASS counterparts. Field-decontaminated VVV photometry is
used to analyse Colour-Magnitude Diagrams (CMDs), stellar radial density
profiles (RDPs) and determine astrophysical parameters. We report the discovery
of four ECs and one intermediate-age cluster in the complex area. We derive a
revised distance estimate for NGC 6357 of 1.780.1 kpc based on the cluster
CMD morphologies. Among the ECs, one contains the binary star the WR 93, while
the remaining ones are dominated by pre-main sequence (PMS) stars,
young-stellar objects (YSO) and/or and have a developed main sequence. These
features reflect a significant age spread among the clusters. Evidence is found
that the relatively populous cluster Pismis 24 hosts two subclusters.Comment: This article will be published in the A&A. 11 pages, 15 figures and 3
table
On Carbon Burning in Super Asymptotic Giant Branch Stars
We explore the detailed and broad properties of carbon burning in Super
Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models.
The location of first carbon ignition, quenching location of the carbon burning
flames and flashes, angular frequency of the carbon core, and carbon core mass
are studied as a function of the ZAMS mass, initial rotation rate, and mixing
parameters such as convective overshoot, semiconvection, thermohaline and
angular momentum transport. In general terms, we find these properties of
carbon burning in SAGB models are not a strong function of the initial rotation
profile, but are a sensitive function of the overshoot parameter. We
quasi-analytically derive an approximate ignition density, g cm, to predict the location of first carbon ignition
in models that ignite carbon off-center. We also find that overshoot moves the
ZAMS mass boundaries where off-center carbon ignition occurs at a nearly
uniform rate of / 1.6
. For zero overshoot, =0.0, our models in the ZAMS mass
range 8.9 to 11 show off-center carbon ignition. For
canonical amounts of overshooting, =0.016, the off-center carbon
ignition range shifts to 7.2 to 8.8 . Only systems with
and ZAMS mass 7.2-8.0 show
carbon burning is quenched a significant distance from the center. These
results suggest a careful assessment of overshoot modeling approximations on
claims that carbon burning quenches an appreciable distance from the center of
the carbon core.Comment: Accepted ApJ; 23 pages, 21 figures, 5 table
- …