953,335 research outputs found

    Lightweight inflatable material with low permeability

    Get PDF
    Material features combination of Mylar, for strength, and Saran, for impermeable qualities. Second lamination of Mylar prevents blocking, adds strength, and increases barrier rating. Different combinations of laminations produce variety of thicknesses and barrier ratings. Material can be metallized for increased barrier reliability and radar reflectivity, and can be treated with a heat-resistant coating

    On the correction of anomalous phase oscillation in entanglement witnesses using quantum neural networks

    Full text link
    Entanglement of a quantum system depends upon relative phase in complicated ways, which no single measurement can reflect. Because of this, entanglement witnesses are necessarily limited in applicability and/or utility. We propose here a solution to the problem using quantum neural networks. A quantum system contains the information of its entanglement; thus, if we are clever, we can extract that information efficiently. As proof of concept, we show how this can be done for the case of pure states of a two-qubit system, using an entanglement indicator corrected for the anomalous phase oscillation. Both the entanglement indicator and the phase correction are calculated by the quantum system itself acting as a neural network

    Isostaticity in two dimensional pile of rigid disks

    Full text link
    We study the static structure of piles made of polydisperse disks in the rigid limit with and without friction using molecular dynamic simulations for various elasticities of the disks and pile preparation procedures. The coordination numbers are calculated to examine the isostaticity of the pile structure. For the frictionless pile, it is demonstrated that the coordination number converges to 4 in the rigid limit, which implies that the structure of rigid disk pile is isostatic. On the other hand, for the frictional case with the infinite friction constant, the coordination number depends on the preparation procedure of the pile, but we find that the structure becomes very close to isostatic with the coordination number close to 3 in the rigid limit when the pile is formed through the process that tends to make a pile of random configuration.Comment: 3 pages, 3 figures, Submitted to J. Phys. Soc. Jp

    Lightweight, variable solidity knitted parachute fabric

    Get PDF
    A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection

    Duality between Topologically Massive and Self-Dual models

    Get PDF
    We show that, with the help of a general BRST symmetry, different theories in 3 dimensions can be connected through a fundamental topological field theory related to the classical limit of the Chern-Simons model.Comment: 13 pages, LaTe

    Thermal stress analysis of ceramic gas-path seal components for aircraft turbines

    Get PDF
    Stress and temperature distributions were evaluated numerically for a blade-tip seal system proposed for gas turbine applications. The seal consists of an abradable ceramic layer on metallic backing with intermediate layers between the ceramic layer and metal substrate. The most severe stresses in the seal, as far as failure is concerned, are tensile stresses at the top of the ceramic layer and shear and normal stresses at the layer interfaces. All these stresses reach their maximum values during the deceleration phase of a test engine cycle. A parametric study was carried out to evaluate the influence of various design parameters on these critical stress values. The influences of material properties and geometric parameters of the ceramic, intermediate, and backing layers were investigated. After the parametric study was completed, a seal system was designed which incorporated materials with beneficial elastic and thermal properties in each layer of the seal. An analysis of the proposed seal design shows an appreciable decrease in the magnitude of the maximum critical stresses over those obtained with earlier configurations

    Probing embedded star clusters in the HII complex NGC 6357 with VVV

    Get PDF
    NGC 6357 is an active star-forming region located in the Sagittarius arm displaying several star clusters, which makes it a very interesting target to investigate star formation and early cluster evolution. We explore NGC 6357 with the "VISTA Variables in the V\'ia a L\'actea" (VVV) photometry of seven embedded clusters (ECs), and one open cluster (OC) projected in the outskirts of the complex.Photometric and structural properties (age, reddening, distance, core and total radii) of the star clusters are derived. VVV saturated stars are replaced by their 2MASS counterparts. Field-decontaminated VVV photometry is used to analyse Colour-Magnitude Diagrams (CMDs), stellar radial density profiles (RDPs) and determine astrophysical parameters. We report the discovery of four ECs and one intermediate-age cluster in the complex area. We derive a revised distance estimate for NGC 6357 of 1.78±\pm0.1 kpc based on the cluster CMD morphologies. Among the ECs, one contains the binary star the WR 93, while the remaining ones are dominated by pre-main sequence (PMS) stars, young-stellar objects (YSO) and/or and have a developed main sequence. These features reflect a significant age spread among the clusters. Evidence is found that the relatively populous cluster Pismis 24 hosts two subclusters.Comment: This article will be published in the A&A. 11 pages, 15 figures and 3 table

    On Carbon Burning in Super Asymptotic Giant Branch Stars

    Get PDF
    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, ρign2.1×106\rho_{ign} \approx 2.1 \times 10^6 g cm3^{-3}, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of ΔMZAMS\Delta M_{\rm ZAMS}/Δfov\Delta f_{\rm{ov}}\approx 1.6 MM_{\odot}. For zero overshoot, fovf_{\rm{ov}}=0.0, our models in the ZAMS mass range \approx 8.9 to 11 MM_{\odot} show off-center carbon ignition. For canonical amounts of overshooting, fovf_{\rm{ov}}=0.016, the off-center carbon ignition range shifts to \approx 7.2 to 8.8 MM_{\odot}. Only systems with fovf_{\rm{ov}} 0.01\geq 0.01 and ZAMS mass \approx 7.2-8.0 MM_{\odot} show carbon burning is quenched a significant distance from the center. These results suggest a careful assessment of overshoot modeling approximations on claims that carbon burning quenches an appreciable distance from the center of the carbon core.Comment: Accepted ApJ; 23 pages, 21 figures, 5 table
    corecore