12,886 research outputs found

    Le plaisir: "the mask" and "the model"

    Get PDF

    The effect of delta 3 on a yawing HAWT blade and on yaw dynamics

    Get PDF
    A single degree of freedom aeroelastic computer model, WMSTAB3, was employed to perform a parametric analysis of HAWT blade behavior during yaw maneuvers. Over 1,000 different combinations of delta sub 3 and normal frequency were analyzed. The effect of delta sub 3 and flapping stiffness on flapping frequency, phase, and magnitude are discussed. The moments transmitted to the fixed system during yaw maneuvers were calculated and reduced to time constants of response to step changes in wind direction. The significance of the time constants for the configurations considered relative to yaw response rate and lag angle is discussed, along with their possible significance for large HAWT

    Knowledge Transfer Needs and Methods

    Get PDF
    INE/AUTC 12.3

    Enabling Data-Driven Transportation Safety Improvements in Rural Alaska

    Get PDF
    Safety improvements require funding. A clear need must be demonstrated to secure funding. For transportation safety, data, especially data about past crashes, is the usual method of demonstrating need. However, in rural locations, such data is often not available, or is not in a form amenable to use in funding applications. This research aids rural entities, often federally recognized tribes and small villages acquire data needed for funding applications. Two aspects of work product are the development of a traffic counting application for an iPad or similar device, and a review of the data requirements of the major transportation funding agencies. The traffic-counting app, UAF Traffic, demonstrated its ability to count traffic and turning movements for cars and trucks, as well as ATVs, snow machines, pedestrians, bicycles, and dog sleds. The review of the major agencies demonstrated that all the likely funders would accept qualitative data and Road Safety Audits. However, quantitative data, if it was available, was helpful

    Theory of Raman response in three-dimensional Kitaev spin liquids: application to β−\beta- and γ−\gamma-Li2_2IrO3_3 compounds

    Full text link
    We calculate the Raman response for the Kitaev spin model on the H\mathcal{H}-00, H\mathcal{H}-11, and H\mathcal{H}-∞\infty harmonic honeycomb lattices. We identify several quantitative features in the Raman spectrum that are characteristic of the spin liquid phase. Unlike the dynamical structure factor, which probes both the Majorana spinons and flux excitations that emerge from spin fractionalization, the Raman spectrum in the Kitaev models directly probes a density of states of pairs of fractional, dispersing Majorana spinons. As a consequence, the Raman spectrum in all these models is gapless for sufficiently isotropic couplings, with a low-energy power law that results from the Fermi lines (or points) of the dispersing Majorana spinons. We show that the polarization dependence of the Raman spectrum contains crucial information about the symmetry of the ground state. We also discuss to what extent the features of the Raman response that we find reflect generic properties of the spin liquid phase, and comment on their possible relevance to α−\alpha-, β−\beta- and γ−\gamma-Li2_2IrO3_3 compounds.Comment: 19 pages, 10 figures. VERSION 2: Corrected Figure 5 and fixed inconsistencies between A and B chain-labelings. Also- a few typos and two new ref

    Raman scattering in correlated thin films as a probe of chargeless surface states

    Get PDF
    Several powerful techniques exist to detect topologically protected surface states of weakly-interacting electronic systems. In contrast, surface modes of strongly interacting systems which do not carry electric charge are much harder to detect. We propose resonant light scattering as a means of probing the chargeless surface modes of interacting quantum spin systems, and illustrate its efficacy by a concrete calculation for the 3D hyperhoneycomb Kitaev quantum spin liquid phase. We show that resonant scattering is required to efficiently couple to this model's sublattice polarized surface modes, comprised of emergent Majorana fermions that result from spin fractionalization. We demonstrate that the low-energy response is dominated by the surface contribution for thin films, allowing identification and characterization of emergent topological band structures.Comment: 7 pages, 4 figures; added supplemental materia
    • …
    corecore