387 research outputs found

    Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review

    Get PDF
    The progress in additive manufacturing has remarkably increased the application of lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes. Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the regeneration of massive bone defects, which require external intervention to be bridged. However, the repair of such critical bone defects remains a challenge. The present review collected the most significant findings in the literature of the last ten years on Ti6Al4V porous scaffolds to provide a comprehensive summary of the mechanical and morphological requirements for the osteointegration process. Particular attention was given on the effects of pore size, surface roughness and the elastic modulus on bone scaffold performances. The application of the Gibson-Ashby model allowed for a comparison of the mechanical performance of the lattice materials with that of human bone. This allows for an evaluation of the suitability of different lattice materials for biomedical applications

    Energy-maximising model predictive control for a multi degree-of-freedom pendulum-based wave energy system

    Get PDF
    Renewable energy sources can be a solution for the recent pollution increasing scenario and the need for diversification of the energy market. Among such alternative sources,wave energy represents a viable solution, due to the its high power density and accessibility.Nonetheless, wave energy is still in phase of development, and a key stepping stone towards commercialisation is strongly linked to the availability of optimal control strategies for maximum energy harvesting. With its ability to handle system constraints and optimise power absorption directly, model predictive control (MPC) has gained popularity within the WEC community as a potential solution for the corresponding energy-maximising problem. In this study, an MPC strategy is developed for real-time control of the so-called PeWEC energy harvesting system,providing also a solution for the wave excitation estimation and forecasting problem, inherently required by the MPC controller to achieve optimal performance. Improved computational requirements are obtained via definition of a reduced control-oriented model, describing the dynamics of the system in a compact form. The performance of the proposed strategy is illustrated via a comprehensive numerical appraisal

    Biomechanical performance of the Bicaval Transcatheter System for the treatment of severe tricuspid regurgitation

    Get PDF
    Introduction: Tricuspid regurgitation (TR) is a relatively common valvular disease, which can result from structural abnormalities of any anatomic part of the tricuspid valve. Severe TR is linked to congestive heart failure and hemodynamic impairment, resulting in high mortality when repaired by elective surgery. This study was undertaken to quantify the structural and hemodynamic performance of the novel Transcatheter Bicaval Valves System (TricValve) percutaneously implanted in the superior vena cava (SVC) and inferior vena cava (IVC) of two patients with severe TR and venous congestion. Methods: After developing the SVC and IVC device models, the contact pressure exerted on the vena cava wall was obtained by computational analysis. Both smoothed-particle hydrodynamics (SPH) and computational fluid dynamics were carried out to quantify caval reflux in the right atrium and the pressure field of pre- and post-TricValve scenarios, respectively. Results: Analysis of contact pressure highlighted the main anchoring area of the SVC device occurring near the SVC device belly, while the IVC device exerted pronounced forces in the device’s proximal and distal parts. SPH-related flow velocities revealed the absence of caval reflux, and a decrease in time-averaged pressure was observed near the SVC and IVC after TricValve implantation. Discussion: Findings demonstrated the potential of computational tools for enhancing our understanding of the biomechanical performance of structural tricuspid valve interventions and improving the way we design next-generation transcatheter therapies to treat the tricuspid valve with heterotopic caval valve implantation

    Impact of pericardial effusion on cardiac mechanics in patients with dilated cardiomyopathy

    Get PDF
    Dilated cardiomyopathy (CDM) is a degenerative disease of the myocardium accompanied by left ventricular (LV) remodeling, resulting in an impaired pump performance. Differently, pericardial effusion (PE) is a liquid accumulation in the pericardial cavity, which may inhibit blood filling of heart chambers. Clinical evidence show that PE may improve pump performance in patients with CDM. Therefore, this study aims to assess wall stress and global function of patients with CDM, PE as compared to healthy patient. These findings suggests that CDM has an important implication in the mechanical changes of LV and right ventricle by increasing wall stress and reducing pump function. Conversely, PE determines lowering myocardial fiber stress and improves global function as compared to those of CD

    Temperature dependence of thermal conductivity in 1D nonlinear lattices

    Full text link
    We examine the temperature dependence of thermal conductivity of one dimensional nonlinear (anharmonic) lattices with and without on-site potential. It is found from computer simulation that the heat conductivity depends on temperature via the strength of nonlinearity. Based on this correlation, we make a conjecture in the effective phonon theory that the mean-free-path of the effective phonon is inversely proportional to the strength of nonlinearity. We demonstrate analytically and numerically that the temperature behavior of the heat conductivity κ1/T\kappa\propto1/T is not universal for 1D harmonic lattices with a small nonlinear perturbation. The computer simulations of temperature dependence of heat conductivity in general 1D nonlinear lattices are in good agreements with our theoretic predictions. Possible experimental test is discussed.Comment: 6 pages and 2 figures. Accepted for publication in Europhys. Let

    Measuring the quality of teacher-child interaction in autistic disorder

    Get PDF
    The teacher-child relationship fulfils critical functions for the well being of the child, affecting emotive development, academic achievements, behavioral conducts and relationships with peers. The goal of the presented study is to compare the perceptions of the class teacher and of the support teacher concerning their relationship with subjects with autistic spectrum disorders (ASD; N=14; Mean age =90.07 months; SD=19.36) and with children of the control group (4 classmates per every subject of the experimental group, for a total of 56 pupils, Mean age = 80.36 months; SD=18.33). The perception by the teacher of the class, concerning the relationship with children with ASD, is characterized by higher levels of Conflict, and lower levels of Closeness, if compared with perceptions about the relationship with children of the control group (Conflict: t=-3.317; df= 14.931; p<0.01; Closeness: t= 5.638; df = 65; p < 0.001). The perception of the two teachers only correlates with regards to the Conflict dimension (r=0.769; p < 0.01). In reference to the child's adaptive skills only the social skills scale correlates with the Closeness. This is true in the perception of the support teacher (r=0.598; p<0.05). Finally, we take into account how the perception of the relationship relates with the socio-personal and professional data of the teachers and with the social features of the children

    Data-based control synthesis and performance assessment for moored wave energy conversion systems: the PeWEC case

    Get PDF
    With a model-based control strategy, the effectiveness of the associated control action depends on the availability of a representative control-oriented model. In the case of floating offshore wave energy converters (WECs), the device response depends upon the interaction between mooring system, any mechanical parts, and the hydrodynamics of the floating body. This study proposes an approach to synthesise WEC controllers under the effect of mooring forces building a representative data-based linear model able to include any relevant dynamics. Moreover, the procedure is tested on the moored pendulum wave energy converter (PeWEC) by means of a high-fidelity mooring solver, OrcaFlex (OF). In particular, the control action is computed with and without knowledge of the mooring influence, in order to analyse and elucidate the effect of the station-keeping system on the harvested energy. The performance assessment of the device is achieved by evaluating device power on the resource scatter characterising Pantelleria, Italy. The results show the relevance of the mooring dynamics on the device response and final set of control parameters and, hence, a significant influence of the station-keeping system on control synthesis and extracted mechanical power
    corecore