3,696 research outputs found
Application of Single-Station Sigma and Site-Response Characterization in a Probabilistic Seismic-Hazard Analysis for a New Nuclear Site
Aleatory variability in ground-motion prediction, represented by the standard deviation (sigma) of a ground-motion prediction equation, exerts a very strong influence on the results of probabilistic seismic-hazard analysis (PSHA). This is especially so at the low annual exceedance frequencies considered for nuclear facilities; in these cases, even small reductions in sigma can have a marked effect on the hazard estimates. Proper separation and quantification of aleatory variability and epistemic uncertainty can lead to defensible reductions in sigma. One such approach is the single-station sigma concept, which removes that part of sigma corresponding to repeatable site-specific effects. However, the site-to-site component must then be constrained by site-specific measurements or else modeled as epistemic uncertainty and incorporated into the modeling of site effects. The practical application of the single-station sigma concept, including the characterization of the dynamic properties of the site and the incorporation of site-response effects into the hazard calculations, is illustrated for a PSHA conducted at a rock site under consideration for the potential construction of a nuclear power plant.Civil, Architectural, and Environmental Engineerin
Hairy Tongue
Hairy tongue (lingua villosa) is a commonly observed condition of defective desquamation of the filiform papillae that results from a variety of precipitating factors. [1] The condition is most frequently referred to as black hairy tongue (lingua villosa nigra); however, hairy tongue may also appear brown, white, green, pink, or any of a variety of hues depending on the specific etiology and secondary factors (eg, use of colored mouthwashes, breath mints, candies). [2, 3] See the images below
Correlated charge polarization in a chain of coupled quantum dots
Coherent charge transfer in a linear array of tunnel-coupled quantum dots,
electrostatically coupled to external gates, is investigated using the Bethe
ansatz for a symmetrically biased Hubbard chain. Charge polarization in this
correlated system is shown to proceed via two distinct processes: formation of
bound states in the metallic phase, and charge transfer processes corresponding
to a superposition of antibound states at opposite ends of the chain in the
Mott-insulating phase. The polarizability in the insulating phase of the chain
exhibits a universal scaling behavior, while the polarization charge in the
metallic phase of the model is shown to be quantized in units of .Comment: 9 pages, 3 figures, 1 tabl
Unusual low-temperature thermopower in the one-dimensional Hubbard model
The low-temperature thermoelectric power of the repulsive-interaction
one-dimensional Hubbard model is calculated using an asymptotic Bethe ansatz
for holons and spinons. The competition between the entropy carried by the
holons and that carried by the backflow of the spinons gives rise to an unusual
temperature and doping dependence of the thermopower which is qualitatively
similar to that observed in the normal state of high- superconductors.Comment: 11 pages, REVTEX 3.
Jahn-Teller Distortions and the Supershell Effect in Metal Nanowires
A stability analysis of metal nanowires shows that a Jahn-Teller deformation
breaking cylindrical symmetry can be energetically favorable, leading to stable
nanowires with elliptic cross sections. The sequence of stable cylindrical and
elliptical nanowires allows for a consistent interpretation of experimental
conductance histograms for alkali metals, including both the shell and
supershell structures. It is predicted that for gold, elliptical nanowires are
even more likely to form since their eccentricity is smaller than for alkali
metals. The existence of certain metastable ``superdeformed'' nanowires is also
predicted
Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects
We study the persistent currents induced by both the Aharonov-Bohm and
Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a
side-branch quantum dot at Kondo resonance. For privileged values of the
Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable
model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic
Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect
on the persistent current. In contrast, the Kondo resonance interferes with the
spin-dependent Aharonov-Casher effect to induce a current which, in the
strong-coupling limit, is independent of the number of electrons in the ring.Comment: Replaced with published version; 5 page
- …