391 research outputs found
Recycling of Heterogeneous Mixed Waste Polymers through Reactive Mixing
Anything that is not recycled and/or recovered from waste represents a loss of raw materials. Recycling plastics can help to reduce this loss and to reduce greenhouse gases, improving the goal of the decarbonization of plastic. While the recycling of single polymers is well assessed, the recycling of mixed plastics is very difficult because of the strong incompatibility among the different polymers usually present in urban waste. In this work, heterogeneous mixed polymers, i.e., polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylenetherephthalate (PET) were processed using a laboratory mixer under different conditions of temperature, rotational speed and time to evaluate the effect of the above parameters on morphology, viscosity and mechanical properties of the final blends. Morphological analysis shows a strong incompatibility between the polyethylene matrix and the other dispersed polymers. The blends show, of course, a brittle behavior, but this behavior slightly improves with decreasing temperature and increasing rotational speed. A brittle-ductile transition was observed only at a high level of mechanical stress obtained by increasing rotational speed and decreasing temperature and processing time. This behavior has been attributed to both a decrease in the dimensions of the particles of the dispersed phase and to the formation of a small amount of copolymers that act as adhesion promoters between matrix and dispersed phases
Effect of moisture content on the processing and mechanical properties of a biodegradable polyester
This work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing. With all these samples, it is possible to determine the effect of moisture content on the processing and mechanical properties separately, as well as the combined effect of moisture content on the mechanical properties. The results obtained showed that the amount of absorbed water—both before processing and before mechanical testing— causes an increase in elongation at break and a slight reduction of the elastic modulus and tensile strength. These changes have been associated with possible hydrolytic degradation during the compression molding process and, in particular, with the plasticizing action of the moisture absorbed by the specimens
An additive model to predict the rheological and mechanical properties of polypropylene blends made by virgin and reprocessed components
In this work, an additive model for the prediction of the rheological and mechanical properties of monopolymer blends made by virgin and reprocessed components is proposed. A polypropylene sample has been reprocessed more times in an extruder and monopolymer blends have been prepared by simulating an industrial process. The scraps are exposed to regrinding and are melt reprocessed before mixing with the virgin polymer. The reprocessed polymer is, then, subjected to some thermomechanical degradation. Rheological and mechanical experimental data have been compared with the theoretical predictions. The results obtained showed that the values of this simple additive model are a very good fit for the experimental values of both rheological and mechanical properties
Photo-oxidative and soil burial degradation of irrigation tubes based on biodegradable polymer blends
Irrigation tubes based on biodegradable polymers were prepared via an extrusion-drawing process by Irritec and compared to conventional pipes made of high-density polyethylene (HDPE). A commercial polylactide/poly (butyleneadipate-co-butyleneterephthalate) (PLA/PBAT) blend (Bio-Flex®) and Mater-Bi® were used. The polymers were characterized from rheological and mechanical points of view. Irrigation pipes were subjected to photoaging with continued exposure to UV radiation up to 22 days. The degradability in the soil of irrigation tube samples was studied. The influence of temperature and UV irradiation on soil burial degradation was investigated. A soil burial degradation test was carried out at 30 °C and 50 °C for up to 70 days. The degree of degradation was evaluated from the weight loss percentage. The degradation rate of irrigation tube samples based on Mater-Bi® was higher at 30 °C and was stimulated after 14 days of UV irradiation. Higher temperatures or UV aging encouraged the disintegration in soil of Bio-Flex®-based irrigation tubes. Furthermore, tube samples, before and after UV and soil burial degradation, were analyzed by Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR) spectroscop
Preliminary evaluation of plasmix compound from plastics packaging waste for reuse in bituminous pavements
Finding an appropriate technical solution for reusing waste plastics is crucial for creating a circular plastic economy. Although mechanical recycling is the best option for recycling post-consumer plastics, some heterogeneous mixed plastics cannot be recycled to produce secondary material due to their very low properties. In this case, alternative routes should be considered in order to limit their disposal as much as possible. Therefore, in order to solve the environmental problems in the landfills of plastic waste recycling, and to improve the mechanical performance of bitumen for road pavement, the reuse of these post-consumer plastic wastes are preliminarily evaluated for the modification of bitumen for road use. The field of polymers used so far and widely studied concerns virgin materials, or highly homogeneous materials, in case of recycled plastics. In this work, a highly heterogeneous mixed plastic—Plasmix—from the separate collection in Italy, is used as a bitumen modifier for road construction. The research focused on the dry (into the mixture) and wet (into the binder) addition of different content of the Plasmix compound, with the aim of assessing the feasibility of the modification itself. Results of the mechanical tests carried out prove an increase in performance and that there is a potential of the addition of the Plasmix compound both for binder and mixture modifications
Influence of a biodegradable contaminant on the mechanical recycling of a low-density polyethylene sample
Mechanical recycling of oil-derived polymers is certainly our best option to reduce pollution, save raw materials, and protect ourselves and the environment from the adverse effects of waste disposal. However, the presence of contaminants, including other types of plastics, that are mixed in during the recycling collection process or during the mechanical waste sorting stage could adversely affect the quality of the recycled product, leading to the recycling of a poor-quality secondary material. In this work, the influence of a biodegradable contaminant on the mechanical recycling of a low-density polyethylene (LDPE) sample was investigated by rheological (shear and non-isothermal elongation) and mechanical analyses. The results showed that 2% of the contaminant is able to influence the rheological, shear, and isothermal elongation properties of recycled LDPE, while the results of the mechanical tests showed that after one extrusion cycle, the main tensile properties were not significantly affected by the presence of the contaminant, but after only two cycles of extrusions, some significant reduction in the final properties began to appear. In short, the presence of 2% of a biodegradable co-polyester in a LDPE matrix gives rise to a more pronounced decay of the rheological and mechanical properties, but, after two extrusion steps, both rheological and mechanical properties seem still useful for the production of film
Investigation on the properties and on the photo-oxidation behaviour of polypropylene/fumed silica nanocomposites
This work investigates the effects of very small amounts of fumed silica on the morphology and on the rheological and mechanical behaviour of polypropylene nanocomposites and on their photo-oxidation behaviour. Polypropylene nanocomposites were prepared using a twin-screw corotating extruder with 0, 1 and 2 wt/wt% of SiO2. Morphological, mechanical, thermomechanical and rheological properties were examined. It was found that the viscosity of the matrix is reduced by the presence of the silica nanoparticles, suggesting a poor adhesion between the two phases and probably some lubricating effect. On the contrary, the mechanical and, in particular, the thermomechanical properties of the matrix are considerably improved by the presence of the silica. In particular, elastic modulus and tensile strength increases remarkably, and this effect becomes more and more remarkable with an increasing temperature. As for the photo-oxidation behaviour, the presence of silica improves the photostability of the polypropylene matrix. This effect has been attributed to both the barrier to the oxygen and to the absorbance of the UV radiation from the silica nanoparticles. Finally, no significant effect of the silica nanoparticles has been put in evidence on the crystallisation behaviour of the polypropylene. As for the effect of the silica content, the difference in the properties of the two nanocomposites is relatively small and all the measured properties depend much less than linearly with its amount. This has been correlated with the reaggregation of the nanoparticles that, having a larger size, decrease the contact area between the matrix and the filler
Toward the Decarbonization of Plastic: Monopolymer Blend of Virgin and Recycled Bio-Based, Biodegradable Polymer
Decarbonization of plastics is based on two main pillars: bio-based polymers and recycling. Mechanical recycling of biodegradable polymers could improve the social, economic and environmental impact of the use of these materials. In this regard, the aim of this study was to investigate whether concentrations of the same recycled biopolymer could significantly affect the rheological and mechanical properties of biodegradable monopolymer blends. Monopolymer blends are blends made of the same polymers, virgin and recycled. A sample of commercially available biodegradable blend was reprocessed in a single-screw extruder until two extrusion cycles were completed. These samples were exposed to grinding and melt reprocessed with 75% and 90% of the same virgin polymer. The blends were characterized by tensile tests and rheological tests. The results obtained showed that while multiple extrusions affected the mechanical and rheological properties of the polymer, the concentration of the reprocessed material present in the blends only very slightly affected the properties of the virgin material. In addition, the experimentally observed trends were accurately predicted by the additive model adopted
- …