64 research outputs found

    Work Hours Constraints: Impacts and Policy Implications

    Get PDF
    If individuals reveal their preference as consumers, then they are taken seriously. What happens if individuals, as employees, reveal their preferences in working hours? And what happens if there is a misalignment between actual hours worked and preferred hours, the so-called work hours constraints? How does this affect the productivity of workers, their health, and overall life satisfaction? Labor supply and corresponding demand are fundamental to production. Labor economists know for long that the fit of a worker in a job and the matching of skills to the assigned employment are of paramount importance; they guarantee high productivity, quality output, and individual happiness. Employees demand higher social awareness and a working environment where they feel useful and happy. The evidence shows that discrepancies between preferred hours of work and actual hours of work can have serious detrimental effects on workers, perverse effects on labor supply with unintended direct ramifications on the labor market and indirect implications on the goods and services markets. The sooner employers acknowledge and address working hours constraints the faster we can build work lives that make us better off.labor market, work time, work hours constraints, health, happiness, satisfaction

    Dark-State Polaritons for multi-component and stationary light fields

    Full text link
    We present a general scheme to determine the loss-free adiabatic eigensolutions (dark-state polaritons) of the interaction of multiple probe laser beams with a coherently driven atomic ensemble under conditions of electromagnetically induced transparency. To this end we generalize the Morris-Shore transformation to linearized Heisenberg-Langevin equations describing the coupled light-matter system in the weak excitation limit. For the simple lambda-type coupling scheme the generalized Morris-Shore transformation reproduces the dark-state polariton solutions of slow light. Here we treat a closed-loop dual-V scheme wherein two counter-propagating control fields generate a quasi stationary pattern of two counter-propagating probe fields -- so-called stationary light. We show that contrary to previous predictions,there exists a single unique dark-state polariton; it obeys a simple propagation equation.Comment: 6 pages, 2 figure

    Confinement limit of Dirac particles in scalar 1D potentials

    Full text link
    We present a general proof that Dirac particles cannot be localized below their Compton length by symmetric but otherwise arbitrary scalar potentials. This proof does not invoke the Heisenberg uncertainty relation and thus does not rely on the nonrelativistic linear momentum relation. Further it is argued that the result is also applicable for more general potentials, as e.g. generated by nonlinear interactions. Finally a possible realisation of such a system is proposed.Comment: 2 page

    Robust optical delay lines via topological protection

    Get PDF
    Phenomena associated with topological properties of physical systems are naturally robust against perturbations. This robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall effects. Here we show how exploiting topological properties of optical systems can be used to implement robust photonic devices. We demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application, we show that the topological protection can be used to dramatically improve the performance of optical delay lines and to overcome limitations related to disorder in photonic technologies.Comment: 9 pages, 5 figures + 12 pages of supplementary informatio

    From Anderson to anomalous localization in cold atomic gases with effective spin-orbit coupling

    Full text link
    We study the dynamics of a one-dimensional spin-orbit coupled Schrodinger particle with two internal components moving in a random potential. We show that this model can be implemented by the interaction of cold atoms with external lasers and additional Zeeman and Stark shifts. By direct numerical simulations a crossover from an exponential Anderson-type localization to an anomalous power-law behavior of the intensity correlation is found when the spin-orbit coupling becomes large. The power-law behavior is connected to a Dyson singularity in the density of states emerging at zero energy when the system approaches the quasi-relativistic limit of the random mass Dirac model. We discuss conditions under which the crossover is observable in an experiment with ultracold atoms and construct explicitly the zero-energy state, thus proving its existence under proper conditions.Comment: 4 pages and 4 figure

    Relativistic quantum effects of Dirac particles simulated by ultracold atoms

    Full text link
    Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on Quantum Dynamics of Ultracold Atom

    Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer

    Get PDF
    Recent publications have classified breast cancers on the basis of expression of cytokeratin-5 and -17 at the RNA and protein levels, and demonstrated the importance of these markers in defining sporadic tumours with bad prognosis and an association with BRCA1-related breast cancers. These important observations using different technology platforms produce a new functional classification of breast carcinoma. However, it is important in developing hypotheses about the pathogenesis of this tumour type to review the nomenclature that is being used to emphasize potential confusion between terminology that defines clinical subgroups and markers of cell lineage. This article reviews the lineages in the normal breast in relation to what have become known as the 'basal-like' carcinomas

    Epithelial atypia in biopsies performed for microcalcifications. Practical considerations about 2,833 serially sectioned surgical biopsies with a long follow-up

    Get PDF
    This study analyzes the occurrence of epithelial atypia in 2,833 serially sectioned surgical breast biopsies (SB) performed for microcalcifications (median number of blocks per SB:26) and the occurrence of subsequent cancer after an initial diagnosis of epithelial atypia (median follow-up 160 months). Epithelial atypia (flat epithelial atypia, atypical ductal hyperplasia, and lobular neoplasia) were found in 971 SB, with and without a concomitant cancer in 301 (31%) and 670 (69%) SB, respectively. Thus, isolated epithelial atypia were found in 670 out of the 2,833 SB (23%). Concomitant cancers corresponded to ductal carcinomas in situ and micro-invasive (77%), invasive ductal carcinomas not otherwise specified (15%), invasive lobular carcinomas (4%), and tubular carcinomas (4%). Fifteen out of the 443 patients with isolated epithelial atypia developed a subsequent ipsilateral (n = 14) and contralateral (n = 1) invasive cancer. The high slide rating might explain the high percentages of epithelial atypia and concomitant cancers and the low percentage of subsequent cancer after a diagnosis of epithelial atypia as a single lesion. Epithelial atypia could be more a risk marker of concomitant than subsequent cancer
    corecore